Lab - Observing Chemical Reactions

Introduction and Purpose

In this experiment you will observe examples of the five basic types of chemical reactions.

Procedure

Carry out the reactions using the approximate quantities of materials given. Unless otherwise stated, use test tubes. When heating materials in test tubes, slant the test tube so that the opening is pointed *away* from people. Heat the test tube at the surface of the material and work down towards the bottom of the tube. Discard solutions down the drain, wash and rinse your glassware. Discard solid waste in the waste cans on the lab tables.

In the data section you will balance the equation, write the word equation and record your observations.

Part A:

1. a. Grasp a strip of magnesium ribbon in crucible tongs and ignite it in the burner flame. Hold it over a watch glass. Do not look directly at the flame!

b. Take a piece of pH paper and test a drop of distilled water. Add a few drops of distilled $H_{2}O$ to the magnesium ash and stir it. Then take another piece of pH

paper and test the mixture.

2. Heat a piece of copper metal strongly in the Bunsen burner flame for about 30 s. Remove the copper from the flame and note the change in appearance. Discard the product in the solid waste can.

Part B:

1. Place about 1 scoopful of baking soda (NaHCO $_3$) into a dry test tube. Mass the test

tube with the powder. Heat the sodium hydrogen carbonate in the test tube strongly for 2 minutes. Observe any changes that occur during the heating. Toward the end of the heating, light a wood splint and insert the flaming splint into the mouth of the test tube. Note what happens to the splint. Once the tube has cooled, mass the tube and contents again.

Part C:

1. Place a couple of pieces of mossy zinc metal in a test tube approximately 1/4 full of 3M HCl. Place a stopper loosely in the tube. After a few minutes, light a wood splint and insert the flaming splint into the mouth of the test tube. Hold the test tube in your hand to feel if the temperature has changed.

Part D:

 Place a scoopful of solid Na₂CO₃ in a test tube to a depth of about 1 cm. Add a dropperful of 3M HCl. While the reaction is occurring, test with a flaming splint as in part B. Check to see if the temperature of the mixture has changed.

Part E:

Place about 10 drops of isopropyl alcohol, $\mathrm{C}_{3}\mathrm{H}_{7}\mathrm{OH}$, in a small evaporating dish. Ignite

the alcohol from the top of the liquid with a Bunsen burner. Hold a cold watch glass well above the flame and observe the condensation of water on the bottom. The formation of the mist will be fleeting; watch closely.

Data and Evaluation

Record your observations and balance the equations in the section below.

Part A

1a. Observations:

1a. $Mg + O_2 \rightarrow MgO$

Explain in words:

1b. Observations:

1b. MgO + H₂O \rightarrow Mg(OH)_{2 (aq)}

Explain in words:

2. Observations:

2. _____Cu + _____O__--> ____CuO

Explain in words:

Part B

1. Observations:

1. ____NaHCO \rightarrow ____NaO + ____HO + ____CO $_{2 \text{ (g)}}$ Explain in words:

Part C

1. Observations

1. ____Zn + ____HCl \rightarrow ___ZnCl + __H Explain in words:

Part D

1. Observations

1. ____Na CO + ___ HCl \rightarrow ____NaCl + ___ H O + ___CO ___ 2(g) Explain in words:

Part E

1. Observations

1. $C_{37}(l) + O_{2(g)} \rightarrow C_{2(g)} + H_{2(g)}$ Explain in words: