## AFM Unit 1 - Exponents and Logarithms

1. Asymptote

Base
3. Common Logarithmic Function
4. Compounded Quarterly
5. Compounded Semiannually

Compound Interest
7. Condense a Logarithmic Expression
8. Continuous Compounding
9. Correlation Effect

Dependent Variable

Domain
Domain of a Logarithmic Function

Evaluating a Function

Expanding a Logarithmic Expression
Exponential Decay

Exponential Equation

Exponential Form

Exponential Function

Exponential Growth Function

A line that a graph approaches but never crosses

A number that is multiplied repeatedly; $b$ in $y=b^{x}$
The logarithmic function with base 10

Interest is added on 4 times a year or once every 3 months
The interest or return is accumulated every six months.

Interest earned on both the principal amount and any interest already earned
When a rule is used to write the sum or difference of two or more logarithmic expressions as a single logarithmic expression.
Interest compounded infinitely often over infinitely small compounding periods.

A measure of how well a model fits data; represented by the value $r$, $-1 \leq r \leq 1$

A variable (often denoted by y) whose value depends on that of another.
The set of input values of a function.
Can't log zero or a negative --> set whatever is inside the $\log >0$ to find domain
Substituting a value for $x$ in a function to find the value of the output, $f(x)$.
When a rule is used to write a single logarithm as the sum, difference, product, or quotient of two logarithms.

Occurs when an exponential function has $a b$ value between 0 and 1
$y=a b^{x}$ where $0<b<1$
An equation in which the variables occur as exponents
A number is in exponential form when it is written with a base and an exponent.
$y=a b^{x}$
occurs when an exponential function has $a b$ value greater than 1 . $y=a b^{x}$; where $b>1$
A relationship that assigns exactly one output value to one input value.

Graph of a Function

Half-Life

Independent
Variable
24. Inverse Properties of Logarithms
25. Linear Function

Logarithm
27. Logarithmic Equation
28. Logarithmic Function

Natural Base
30. Natural Exponential Function
31. Natural Logarithmic Function
32. Power Rule of Logarithms
33. Principal
34. Product Rule of Logarithms
35. Quotient Rule of Logarithms

Range
Relation
Vertical Line Test
39. Y-intercept

Zeros of a Function

The graph of the function is the set of all ordered pairs $(x, y)$ such that $y=f(x)$.

Time required until half of a sample remains

A variable (often denoted by $x$ ) whose variation does not depend on that of another.

For $\mathrm{b}>0$ and $\mathrm{b} \neq 1$,
$\log b b^{x}=x$
$b^{\wedge}(\log b x)=x$
A function that creates a straight line when graphed

In the function $x=b \wedge y, y$ is called logarithms, base $b$, of $x$. Usually written as $y=\log b x$
An equation that contains a variable in a logarithmic expression
The inverse of an exponential function; $\mathrm{f}(\mathrm{x})=\log (\mathrm{x})$

An irrational number approximately equal to 2.71828 ; represented by e
$y=e^{x}$

The function $f(X)=\ln x$, which is the inverse of the natural exponential functions $f(X)=e^{x}$
$\operatorname{logbm}{ }^{n}=$ nlogbm

The amount of money deposited or borrowed
$\log b(m n)=\log b m+\log b n$
$\log b(m / n)=\log b m-\log b n$

The set of output values of a function.
Any set of ordered pairs
If no vertical line intersects a graph more than once, then the graph is a function

The $y$-coordinate of a point where a graph crosses the $y$-axis

The $x$-intercepts of the function; the values of $x$ when $f(x)=0$.

