

5.1 Sequences

- Sequences

- Many creations in nature involve intricate mathematical designs, including a variety of spirals.
- The Fibonacci sequence can be found in nature in many places.
- The sequence begins with two ones and every term thereafter is the sum of the two preceding terms
- 1, 1, 2, 3, 5, 8, 13, 21, 24, 55, 89, 144, 233, ... a_{n}
- a_{n} is a general term of the sequence, also called the nth term.

5.1 Sequences

- An infinite sequence is a function whose domain is the set of positive integers. The function values, or terms, of the sequence are represented by

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots
$$

Sequences whose domains consist only of the first n positive integers are called finite sequences.

- Because a sequence is a function whose domain is the set of positive integers, the graph of a sequence is a set of discrete points (not connected).

5.1 Sequences

- Objective: I will be able to identify an infinite series. I will be able to read and write recursion formulas. I will be able to graph sequences.
- Vocabulary

Fibonacci sequence	General Term	Recursion Formulas	Finite Sequence	Graph of a sequence
Infinite Sequence				

5.1 Sequences

```
        Fibonacci Numbers
        on the Piano
        on the Piano
```

|IIIIIIIIIII
One Octave
Numbers in the Fibonacci sequence
can be found in an octave on
the piano keyboard. The octave
contains 2 black keys in one cluster
for a total of 5 black keys. It also
has 8 white keys, for a total of
3 keys. The numbers $2,3,5,8$, and
13 are the third through seventh
terms of the Fibonacci sequence.

5.1 Sequences

- Recursion Formulas
- A recursion formula defines the nth term of a sequence as a function of the previous term.
- Example: $a_{n}=3 a_{n-1}+2$
- Recursion formulas can be used to find the next term in a sequence, but you must already know the previous term in order to find it.

5.2 Summary Notation

- Factorial Notation
- Products of consecutive positive integers occur quite often in sequences.
- Factorial notation is a special notation for consecutive products.
- If n is a positive integer, the notation n ! (Read " n factorial) is the product of all positive integers from n down through 1 .

$$
n!=n(n-1)(n-2) \ldots(3)(2)(1)
$$

- $0!=1$ by definition

5.2 Summary Notation

- Objective: I will be able to read, write, and evaluate factorial notation. I will be able to read, write, and manipulate summation notation for the sums of a sequence.
- Vocabulary

Factorial Notation	Summation Notation	Index of Summation	Upper Limit of Summation	Lower Limit of Summation
Expanding the Summation Notation				

5.2 Summary Notation

- Like exponents, factorials only affect the number they are directly following unless grouping symbols, like parentheses, appear.
- 2 * $3!=2(3 * 2 * 1)=12$
- $(2 * 3)!=6!=6 * 5 * 4 * 3 * 2 * 1=720$

5.2 Summary Notation

- It can be useful to find the sum of the first n terms of a sequence.
- If there are too many terms, writing out the entire sum can be cumbersome.
- Summation notation can be used to simplify writing sums of a sequence.
- The sum of the first n terms of a sequence is represented by

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}
$$

5.2 Summary Notation

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}
$$

- i is the index of summation, which indicates the domain of the terms of the sequence being added.
- n is the upper limit of summation (the largest value of the index)
- 1 is the lower limit of the summation (the smallest value of the index)

5.2 Summary Notation

- NOTES:
- Any letter can be used for the index
- The lower limit can be other numbers than 1
- Writing out the sum of the terms is called expanding the summation notation

5.2 Summary Notation

- Properties of Sums

$$
\begin{gathered}
\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i} \quad \sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} \\
\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i}
\end{gathered}
$$

5.3 Arithmetic Sequences

- Arithmetic Sequences
- An arithmetic sequence is a sequence in which each term after the first differs from the preceding term by a constant amount.
- The difference between consecutive terms is called the common difference of the sequence.

5.3 Arithmetic Sequences

- Finding the Common Difference for an Arithmetic Sequence
- Represented by the symbol d.
- Subtract any two consecutive points in an arithmetic sequence to find the common difference.

$$
d=a_{n}-a_{n-1}
$$

5.3 Arithmetic Sequences

- An arithmetic sequence is a linear function whose domain is the set of positive integers
- The graph of this function is a set of discrete points (points not connected)
- The points lie on a straight line.
- Writing the Terms of an Arithmetic Sequence
- To write a set of terms in an arithmetic sequence, you must know at least one term, usually a_{1}, and the common difference.
- Use the recursion formula $a_{n}=a_{n-1}+d$

5.4 Arithmetic Sums

- Objective: I will be able to find a specific term within an arithmetic sequence. I will be able to find the sum of the first n terms of an arithmetic sequence.
- Vocabulary

Sum of the First n Terms of Arithmetic Sequence

5.4 Arithmetic Sums

- The General term of an Arithmetic Sequence
- Consider how the first six terms in an arithmetic sequence are determined:

a_{1},	$a_{1}+d$,	$a_{1}+2 d$,	$a_{1}+3 d$,	$a_{1}+4 d$,	$a_{1}+5 d$.
a_{1}, first term	a_{2}, second term	a_{3}, third term	a_{4}, fourth term	a_{5}, fifth term	a_{6}, sixth term

- The nth term (general term) of an arithmetic sequence with the first term a_{1} and common difference d is
$a_{n}=a_{1}+(n-1) d$

5.5 Geometric Sequences

- Objective: I will be able to recognize geometric sequences. I will be able to find the common ratio and a set of terms for a geometric sequence. I will be able to find the general term of a geometric sequence.
- Vocabulary

Geometric Sequence	Common Ratio	General Term of a Geometric Sequence

Sequence

5.5 Geometric Sequences

- Find the Common Ratio of a Geometric Sequence
- The common ratio r is found by dividing any term after the first term by the term that directly precedes it.

$$
r=\frac{a_{n}}{a_{n-1}}
$$

- A geometric sequence with a positive common ratio other than 1 is an exponential function whose domain is the positive set of integers.

5.5 Geometric Sequences

- Write Terms of a Geometric Sequence
- To write a set of terms in a geometric sequence, you must know at least one term, usually a_{1}, as well as the common ratio.
- Use the recursion formula: $a_{n}=a_{n-1} * r$
- The General Term of a Geometric Sequence
- The nth term (the general term) of a geometric sequence with the first term a_{1} and the common ratio r is

$$
a_{n}=a_{1} r^{n-1}
$$

5.6 Geometric Series

- Objective: I will be able to find the sum of n terms of a geometric sequence. I will be able to understand and find values of an annuity. I will be able to use geometric series and their sums to find multiplier effect values on the economy.
- Vocabulary
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { nth Partial Sum } & \text { Annuity } & \text { Value of the Annuity }\end{array}
$$ \begin{array}{l}Multiplier

Effect\end{array}\right]\)| Infinite Geometric Series | Sum of Infinite Geometric Series |
| :--- | :--- |

5.6 Geometric Series

- Annuities
- An annuity is a sequence of equal payments made at equal time periods.
- An IRA is an example of an annuity.
- The terms in this sequence are based on the simple interest formula: $A=P 1+r t$
- The value of the annuity is the sum of all deposits made plus all interest paid.

5.6 Geometric Series

- Geometric Series
- An infinite sum in the form

$$
a_{1}+a_{1} r+a_{1} r^{2}+\cdots+a_{1} r^{n-1}+\cdots
$$

with the first term a_{1} and common ratio r is called an infinite geometric series.

$$
A=\frac{P\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\frac{r}{n}}
$$

5.6 Geometric Series

- The sum of an Infinite Geometric Series
- If $-1<r<1$, then the sum of the infinite geometric series above is given by

$$
S=\frac{a_{1}}{1-r}
$$

- If $|r| \geq 1$, the infinite series does not have a sum.

5.6 Geometric Series

- Multiplier Effect
- A tax rebate that returns a certain amount of money to taxpayers can have a total effect on the economy that is many times this amount.
- In economics, this phenomenon is called the multiplier effect.
- This can be found by finding the sum of an infinite geometric series.

