
Quizlet

AFM Unit 5 - Recursive Functions

Study online at quizlet.com/_3wnhhi

a Annuity	A sequence of equal payments made at equal time periods. An IRA is an example.	14. Infinite Geometric Series	An infinite sum in the form
2. Arithmetic Sequence	A sequence in which the difference between any two consecutive terms is the		a ₁ + a ₁ r + a ₁ r ² + a ₁ r ³ + + a ₁ r ⁿ \square ¹ + with the first term all and common ratio r.
	same.		
3. Common Difference	The difference between the successive terms of an arithmetic sequence	15. Infinite Sequence	A function whose domain is the set of positive integers.
4. Common Ratio	The ratio of successive terms of a geometric sequence.	16. Lower Limit of Summation	The value of the index placed below the summation symbol.
5. Factorial Notation	If n is a positive integer, the notation n! is the product of all positive integers from n down through 1.	17. Multiplier Effect	A change in a component of total spending leads to a larger change in GDP.
	n! = n (n - 1)(n - 2) (3)(2)(1) 0! = 1 by definition.	 a Geometric Sequence 	$S_n = \frac{a_1(1-r^n)}{1-r}$
Eihonoosi	A sequence of numbers in which each		1-r
6. Fibonacci Sequence	A sequence of numbers in which each number is the sum of the preceding two.		$Sn = [a_1(1-r^n)]/(1-r)$
eequeinee	0, 1, 1, 2, 3, 5, 8, 13, 21,	19. nth Partial Sum of	$p(a \perp a)$
7. Finite Sequence	Sequences whose domain consist only of the first n positive integers.	an Arithmetic Sequence	$S_n = \frac{n(a_1 + a_n)}{2}$
8. General Term	Represented by the notation an for the nth term of a sequence.		لے Sn = [n (aı + an)]/2
9. General Term of a Geometric	$a_{n} = a_{1}r^{n-1}$	20. Recursion Formulas	Defines the nth term of a sequence as a function of the previous term.
Sequence	n 1 Term found by multiplying the previous term by the common ratio.	21. Summation Notation	summation sign $\longrightarrow_{i=1}^{n} \mathbf{x}_{i}$ typical element
	an = aırn□¹		index of starting point summation lower limit of summation
10. General Term of Arithmetic	$a_n = a_1 + (n-1)d$		The sum of the first n terms of a sequence is represented by Σai = al + a2 + a3 + + an
Sequence	The nth term of an arithmetic sequence with the first term al and the common difference d is	22 Sum of Infinite Geometric Series	S = $\frac{a_1}{a_1}$
	an = a1 + (n - 1)d		—∞ 1-r
n. Geometric Sequence	A sequence in which the quotient between any two consecutive terms is the same.		If -1 < r < 1, then the sum of the infinite
12. Graph of a Sequence	A set of discrete points.		geometric series is s = a1 / (1 - r)
13. Index of	Describes the range of the number of		5 - ai / (1 - 1)
Summation	terms for summation notation.		If IrI is greater than or equal to 1, the infinite series does not have a sum.
		23. Upper Limit of Summation	The value of the index placed above the summation symbol.

	If IrI is greater than or equal to 1, the infinite series does not have a sum.
23. Upper Limit of	The value of the index placed above the
Summation	summation symbol.

24. Value of the Annuity

$$P = Annuity * \frac{1 - (1 + r)^{-n}}{r}$$

The sum of all deposits made plus all interest paid.