

6.I Binomial Theorem

- Binomial Theorem
- When we write out $(a+b)^{n}$, where n is a positive integer, a number of patterns begin to appear.

$$
\begin{aligned}
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

6.2 Binomial Expansion

- Objective: I will be able to find a particular term in a binomial expansion. I will be able to use Pascal's Triangle to find the coefficient of a term in a binomial expansion.
- Vocabulary

Pascal's Triangle

6.3 Permutations

- Objective: I will be able to draw and/or read a tree diagram that describes possible combinations of items. I will be able to use the fundamental counting principle to find the number of choices available. I will be able to find the number of permutations for a set.
- Vocabulary

| Tree |
| :---: | :---: | :---: |
| Diagram | | Fundamental Counting |
| :---: |
| Principle |\quad Permutations

6.3 Permutations

- Fundamental Counting Principle
- A tree diagram is a diagram with branches showing the possible combinations of items.
- The fundamental counting principle states that the number of ways in which a series of successive things can occur is found by multiplying the number of ways in which each thing can occur.

6.3 Permutations

- Permutations
- A permutation is an ordered arrangement of items that occurs when:
- No item is used more than once.
- The order of arrangement makes a difference
- Permutations of n Things Taken r at a Time
- The number of possible permutations if r items are taken from n items is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

6.4 Combinations

- Combinations
- A combination of items occurs when
- The items are selected from the same group.
- No item is used more than once.
- The order of the items makes no difference.
- Difference between permutation and combination:
- Permutation - order matters
- Combination - order makes no difference

6.4 Combinations

- Formula for Combinations
${ }^{\circ}{ }_{n} C_{r}$ means the number of combinations of n things taken r at a time.
- The number of possible combinations if r items are taken from n items is

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

- This is the same formula for the binomial coefficient $\binom{n}{r}$

- Theoretical probabilities applies to situations in which the sample space only contains equally likely outcomes, all of which are known.
- If an event E has $\mathrm{n} €$ equally likely outcomes and its sample space S has $n(S)$ equally likely outcomes, the theoretical probability of event E, denoted by $P(E)$, is
$P(E)=\frac{\text { number of outcomes in event } E}{\text { number of outcomes in sample space } S}=\frac{n(E)}{n(S)}$

6.7 Expected Values

- Ex:Two teams decide to play baseball.They want to decide who bats first. Robert and David are the team captains. They each suggest a method to decide who bats first.
- Robert: Flip a coin. If it lands on heads, my team will bat first. If it lands on tails, David's team bats first.
- Fair method because there is an equal chance that the coin will land on heads or tails.

- Let the digits from I to 6 represent the six prizes.
- Using a graphing calculator, enter the function randlnt $(1,6)$ to generate integers from I to 6 to simulate getting each prize. One trial is completed when all 6 digits have appeared.
- Count how many boxes of cereal will be bought before all the digits I through 6 have appeared.
- Conduct additional trials (19 more for 20 total).Average the results.

6.7 Expected Values

- Calculating an Expected Value
- Expected value uses theoretical probability to tell you what you can expect in the long run.
- If you know what should happen mathematically, you will make better decisions in problem situations.

6.7 Expected Values

- The expected value is the sum of each outcome's value multiplied by its probability.

If A is an event that includes outcomes $A_{1}, A_{2}, A_{3}, \ldots$ and Value $\left(A_{n}\right)$ is a quantitative
value associated with each outcome, the expected value of A is given by
$\operatorname{Value}(A)=P\left(A_{1}\right) \cdot \operatorname{Value}\left(A_{1}\right)+P\left(A_{2}\right) \cdot \operatorname{Value}\left(A_{2}\right)+\ldots$

- This is a weighted average.
- Using the expected value is a matter of selecting the choice with the greater expected value.

6.8 Discrete Random Variables

- Given a random experiment with sample space S, a random variable X is a set function that assigns one and only one real number to each element s that belongs in the sample space S.
- The set of all possible values of the random variable X, denoted x, is called the support, or space, of X.
- NOTE: Capital letters at the end of the alphabet typically represent the definition of the random variable. The corresponding lowercase letters represent the random variable's possible values.

