Unit 7
 Statistics
 AFM
 Mrs. Valentine

7.1 Samples and Surveys

* Obj.: I will understand the different methods of sampling and studying data. I will be able to determine the type used in an example, and select the best choice for collecting/studying data.
* Vocabulary
* Statistics
* Population
* Convenience Sample
* Self-Selected Sample
* Systematic Sample
* Random Sample
* Bias
* Observational Study
* Controlled Experiment
* Survey

7.1 Samples and Surveys

* Statistics is the study, analysis, and interpretation of data.
* Analyzing Sampling Methods
* Population - members of a set

7.1 Samples and Surveys

* Samples
* Convenience Sample - members are readily available
* Self-Selected Sample - volunteers only
* Systematic Sample - selected from regular intervals in ordered set
* Random Sample - all members equally likely to be chosen

7.1 Samples and Surveys

* Bias
* Over/underrepresented part of population
* Systematic error introduced by sampling method
* Data from non-random samples may be true, but will likely be suspect.

7.1 Samples and Surveys

* Analyzing Study Methods
* Observational Study - observe but do not affect the study
* Controlled Experiment - two groups: treatment imposed on one but not the other. Results of the two groups are compared.
* Survey - ask every member a set of questions.

7.2 Central Tendency

* Obj.: I will be able to determine the measures of central tendency for a set of data.
* Vocabulary
* Central Tendency
* Mean
* Median
* Mode
* Outliers
* Quartiles
* Interquartile Range
* Percentile

7.2 Central Tendency

* Measures of Central Tendency
* Mean - average of the data
* Median
* Odd \# data points: middle value of the data
* Even \# data points: mean of two middle values
* Mode - most frequent values
* Bimodal (two modes)
$* 3+$ modes \rightarrow not statistically relevant

7.2 Central Tendency

* Outliers
* Misleading data, different from the rest
* Affect measures of central tendency
* Use differences between adjacent values in ordered data to identify

7.2 Central Tendency

* Comparing Data Sets
* Range of data set - difference between greatest and least values
* Quartiles - if data is divided into four parts by medians, the values separating the four parts are quartiles.
* Interquartile range - difference between first and third quartiles

* Percentile

* Number from $0-100$ that shows the percent of data less than or equal to x .

7.3 Interpreting Graphical Data

* Obj.: I will be able to interpret graphical data to find measures of central tendency.
* Vocabulary
* Box-and-Whisker Plots
* Stem-and-Leaf Display
* Dot Plot
* Histogram
* Class Interval

7.3 Interpreting Graphical Data

* Box-and-Whisker Plots
* Quartiles bound center box.
* Minimum and maximum values are used to form whiskers.

* In calculator: STAT, enter data in L1, enter window values, draw box-and-whisker plot.
$*$

7.3 Interpreting Graphical Data

* Stem-and-Leaf Display
* Choose the leading digit or digits to be the stems. Arrange the stems vertically from lowest to highest value from top to bottom.
* The last digit is the leaf. Record a leaf for each data value on the same horizontal line as its corresponding stem.
Arrange the leaves from lowest to highest value from left to right.
* Provide a key to show what the data means, including units.

```
\(0 \mid 2,3,3,4,5,5,5,6,6,7,7,7,8,8,8,9\)
\(10,0,1,2,2,3,4,5,5,5,8,8,9\)
2 1, 1, 4, 5, 8,8,8,29 \(\quad \|_{2}=1.2\)
\(30,0,0,0,0\)
```


7.3 Interpreting Graphical Data

Dot Plot

* A graphical display of data using dots.
* A number line is provided with the full set of possible values.
* Each dot above a value represents a single occurrence of that value.
* Shows relative frequency and distribution of data.

7.3 Interpreting Graphical Data

7.3 Interpreting Graphical Data

* Histogram
* Similar to a bar graph.
* Divide the range of the data into classes of equal width, so that each data value is in exactly one class.
* The width of these intervals is called the class interval.
* Draw a horizontal axis and indicate the first value in each class interval.
* Draw a vertical scale and label it with either frequencies or relative frequencies.
* Draw rectangles with a width equal to the class interval and height equal to the frequency of the data within each interval.

7.3 Interpreting Graphical Data

7.4 Standard Deviation

* Obj.: I will be able to calculate standard deviation for a set of data. I will be able to calculate z-scores of values in the set.
* Vocabulary
* Standard deviation
* Variance
* Z-scores

7.4 Standard Deviation

* Standard Deviation and Variance
* Measures showing deviation from mean * $\sigma($ sigma $)=$ standard deviation
* $\sigma^{2}($ sigma squared $)=$ variance

7.4 Standard Deviation

* Finding standard deviation
\star Find the mean \bar{x}
* Find the difference between each value and the mean: $x-\bar{x}$
* Square each difference $(x-\bar{x})^{2} \quad \sigma^{2}=\frac{\Sigma(x-\bar{x})^{2}}{n}$
* Find the mean of the squares (= variance)
* Take the square rot of the variance (= standard deviation)

$$
\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}
$$

7.4 Standard Deviation

* Using the Calculator
* STAT \rightarrow EDIT \rightarrow Enter data in L1
* STAT \rightarrow CALC \rightarrow 1-Var Stats
* $\bar{x}=$ mean
* $\sigma X=$ standard deviation

7.4 Standard Deviation

* Describing Data with Standard Deviation
* Written a range
* Example: $x=50 \quad \sigma=10$, then a value x with $40 \leq x \leq 60$ is within one standard deviation of the mean.
* Z-scores
* Z-scores are the number of standard deviations there are between a given value and the mean of the set.

$$
z-\text { score }=\frac{\text { value }- \text { mean }}{\text { standard deviation }}=\frac{x-\bar{x}}{\sigma}
$$

* Can be used to find outliers; if a data point has a z-score $>|3|$, it is an outlier

7.5 Normal Distribution

* Obj.: I will be able to read, create, and use normal distributions. I will be able to determine probability from a normal distribution.
* Vocabulary
* Normal Distribution
* Skewed Data

7.5 Normal Distribution

Normal Distributions

* Discrete probability distribution - finite number possible events
* Continuous probability distribution - any value in an interval of real numbers (usually large data sets)
* Normal distribution - data that vary randomly from the mean.

7.5 Normal Distribution

7.5 Normal Distribution

Skewed data (do not vary predictably from mean)

Positivelv Skewed

Normallv Distributed

Neaativelv Skewed

7.5 Normal Distribution

* Sketching a Normal Curve
* Use the symmetry of a normal distribution to help draw the curve.
* Find the mean and standard deviation of the population.
* Multiply the standard deviation by 1, 2, and 3
* Draw vertical lines at the mean \pm these values.
* Sketch the normal curve.
* Analyzing Normal Distribution

7.5 Normal Distribution

* Analyzing Normal Distribution
* The area between the curve and the interval on the x -axis represents probability.

7.6 Binomial Distribution

* Obj.: I will be able to find probabilities for binomial distributions and related them to normal distributions
* Vocabulary
* Binomial Distribution
* Correction for Continuity
* Delimiting value

7.6 Binomial Distribution

* Binomial Distribution
* A binomial distribution is very different from a normal distribution, but it can have a similar shape if the sample size is large enough.
$\%$ A binomial distribution is discrete, not continuous.

7.6 Binomial Distribution

* Requirements for a binomial distribution:
* The random variable of interest is the count of successes in n trials.
*The number of trials (or sample size), n , is fixed
* Trials and independent, with fixed value $\mathrm{p}=$ $P($ success on a trial) and $\mathrm{q}=\mathrm{P}$ (failure on a trial)
* There are only two possible outcomes on each trial, called "success" and "failure."

7.6 Binomial Distribution

* Notation: B(n, p)
* Binomial Probability Formula: ${ }_{n} C_{x} p^{x}(1-p)^{n-x}$
* To find the relative frequency distribution for set X,
* Use keystrokes $2^{\text {nd }}$ DISTR ALPHA A to pull up binompdf(
* Enter values for n, p, and $\mathrm{X} \rightarrow$ binompdf(n,p,X)

7.6 Binomial Distribution

* Select ENTER to see the relative frequency for that value of X .
* Repeat for all X values to get the relative frequency distribution

Create a histogram of the relative frequencies of X to see the graph of a binomial distribution.

7.6 Binomial Distribution

* Relating Binomial Distribution to Normal Distribution
* Approximate binomial probabilities resemble normal curve areas when the sample size n is very large.
* The area under a normal curve that would be determined to approximate the given binomial probability can be found by using a correction for continuity.

7.6 Binomial Distribution

* Subtract 0.5 from the bottom value of the range and add 0.5 to the top value of the range to find the lower and upper delimiting values.
* Approximate with Normal Distribution when:
- $0 \leq \mu \pm 3 \sigma \leq n$
- $n p(1-p) \geq 10$

7.6 Binomial Distribution

* The formula for the mean is $\mu=n p$
* The formula for the standard deviation is

$$
\sigma=\sqrt{n p(1-p)}
$$

* Find the z -score for X , and find the probability of the z value.

$$
z=\frac{(x+0.5)-\mu}{\sigma}
$$

7.6 Binomial Distribution

* Use key strokes $2^{\text {nd }}$ DISTR 2 to pull up normalcdf(
* Then use the range -9999, z. It should look like: normalcdf(-9999,z).

