

7.1 Samples and Surveys

- Statistics is the study, analysis, and interpretation of data.
- Analyzing Sampling Methods
 - Population members of a set

7.1 Samples and Surveys

- ✤ Samples
 - Convenience Sample members are readily available
 - Self-Selected Sample volunteers only
 - Systematic Sample selected from regular intervals in ordered set
 - Random Sample all members equally likely to be chosen

7.1 Samples and Surveys

✤ Bias

- Over/underrepresented part of population
- Systematic error introduced by sampling method
- Data from non-random samples may be true, but will likely be suspect.

7.1 Samples and Surveys

- Analyzing Study Methods
 - Observational Study observe but do not affect the study
 - Controlled Experiment two groups: treatment imposed on one but not the other. Results of the two groups are compared.
 - ✤ Survey ask every member a set of questions.

7.2 Central Tendency

• *Obj.*: I will be able to determine the measures of central tendency for a set of data.

✤ Vocabulary

- Central Tendency
- ✤ Mean
- Median
- Mode
- Outliers
- Quartiles
- Interquartile Range
- Percentile

7.2 Central Tendency

- ✤ Measures of Central Tendency
 - ✤ Mean average of the data
 - Median
 - Odd # data points: middle value of the data
 - Even # data points: mean of two middle values
 - Mode most frequent values
 - ✤ Bimodal (two modes)
 - 3 + modes \rightarrow not statistically relevant

7.2 Central Tendency

Outliers

- ✤ Misleading data, different from the rest
- ✤ Affect measures of central tendency
- Use differences between adjacent values in ordered data to identify

7.2 Central Tendency

✤ Comparing Data Sets

- Range of data set difference between greatest and least values
- Quartiles if data is divided into four parts by medians, the values separating the four parts are quartiles.
- Interquartile range difference between first and third quartiles
- ✤ Percentile
 - ✤ Number from 0 100 that shows the percent of data less than or equal to x.

7.3 Interpreting Graphical Data

✤ Obj.: I will be able to interpret graphical data to find measures of central tendency.

* Vocabulary

- Box-and-Whisker Plots
- ✤ Stem-and-Leaf Display
- Dot Plot
- ✤ Histogram
- Class Interval

7.3 Interpreting Graphical Data

- ✤ Stem-and-Leaf Display
 - Choose the leading digit or digits to be the stems. Arrange the stems vertically from lowest to highest value from top to bottom.
 - The last digit is the leaf. Record a leaf for each data value on the same horizontal line as its corresponding stem. Arrange the leaves from lowest to highest value from left to right.

Provide a key to show what the data means, including units.

7.3 Interpreting Graphical Data

- Dot Plot
 - ✤ A graphical display of data using dots.
 - A number line is provided with the full set of possible values.
 - Each dot above a value represents a single occurrence of that value.
 - Shows relative frequency and distribution of data.

7.3 Interpreting Graphical Data

✤ Histogram

- Similar to a bar graph.
- Divide the range of the data into classes of equal width, so that each data value is in exactly one class.
- The width of these intervals is called the class interval.
- Draw a horizontal axis and indicate the first value in each class interval.
- Draw a vertical scale and label it with either frequencies or relative frequencies.
- Draw rectangles with a width equal to the class interval and height equal to the frequency of the data within each interval.

7.4 Standard Deviation

 Obj.: I will be able to calculate standard deviation for a set of data. I will be able to calculate z-scores of values in the set.

* Vocabulary

- Standard deviation
- ✤ Variance
- ✤ Z-scores

7.4 Standard Deviation

- Standard Deviation and Variance
 - Measures showing deviation from mean
 - * σ (sigma) = standard deviation
 - σ^2 (sigma squared) = variance

7.4 Standard Deviation

- Finding standard deviation
 - \Leftrightarrow Find the mean \overline{x}
 - ✤ Find the difference between each value and the mean: $x - \overline{x}$
 - Square each difference $(x \overline{x})^2$ $\sigma^2 = \frac{\sum (x \overline{x})^2}{n}$
 - Find the mean of the squares (= variance)
 - ✤ Take the square rot of the variance (=

7.4 Standard Deviation

- ✤ Using the Calculator
 - ♦ STAT \rightarrow EDIT \rightarrow Enter data in L1
 - ♦ STAT → CALC → 1-Var Stats
 - $x \overline{x} = mean$
 - σX = standard deviation

7.4 Standard Deviation

- Describing Data with Standard Deviation
 - Written a range
 - ★ Example: x=50 $\sigma=10$, then a value x with $40 \le x \le 60$ is within one standard deviation of the mean.
- ✤ Z-scores
 - Z-scores are the number of standard deviations there are between a given value and the mean of the set.

$$z - score = \frac{value - mean}{standard \ deviation} = \frac{x - \bar{x}}{\sigma}$$

Can be used to find outliers; if a data point has a z-score > |3|, it is an outlier

7.5 Normal Distribution

 Obj.: I will be able to read, create, and use normal distributions. I will be able to determine probability from a normal distribution.

♦ Vocabulary

- Normal Distribution
- Skewed Data

7.5 Normal Distribution

- Normal Distributions
 - Discrete probability distribution finite number possible events
 - Continuous probability distribution any value in an interval of real numbers (usually large data sets)
 - Normal distribution data that vary randomly from the mean.

7.5 Normal Distribution

- ✤ Sketching a Normal Curve
 - Use the symmetry of a normal distribution to help draw the curve.
 - Find the mean and standard deviation of the population.
 - Multiply the standard deviation by 1, 2, and 3
 - ✤ Draw vertical lines at the mean ± these values.
 - ✤ Sketch the normal curve.
- Analyzing Normal Distribution

7.5 Normal Distribution

- Analyzing Normal Distribution
 - The area between the curve and the interval on the x-axis represents probability.

 Obj.: I will be able to find probabilities for binomial distributions and related them to normal distributions

* Vocabulary

- Binomial Distribution
- Correction for Continuity
- Delimiting value

- Binomial Distribution
 - A binomial distribution is very different from a normal distribution, but it can have a similar shape if the sample size is large enough.
 - A binomial distribution is discrete, not continuous.

- ✤ Requirements for a binomial distribution:
 - The random variable of interest is the count of successes in n trials.
 - The number of trials (or sample size), n, is fixed
 - Trials and independent, with fixed value p = P(success on a trial) and q = P(failure on a trial)
 - There are only two possible outcomes on each trial, called "success" and "failure."

- ✤ Notation: B(n, p)
- ✤ Binomial Probability Formula: ${}_{n}C_{x}p^{x}(1-p)^{n-x}$
- To find the relative frequency distribution for set X,
 - Use keystrokes 2nd DISTR ALPHA A to pull up binompdf(
 - ♦ Enter values for n, p, and X → binompdf(n,p,X)

- Select ENTER to see the relative frequency for that value of X.
- Repeat for all X values to get the relative frequency distribution
- Create a histogram of the relative frequencies of X to see the graph of a binomial distribution.

- Relating Binomial Distribution to Normal Distribution
 - Approximate binomial probabilities resemble normal curve areas when the sample size n is very large.
 - The area under a normal curve that would be determined to approximate the given binomial probability can be found by using a correction for continuity.

 Subtract 0.5 from the bottom value of the range and add 0.5 to the top value of the range to find the lower and upper delimiting values.

* Approximate with Normal Distribution when:

- $0 \le \mu \pm 3\sigma \le n$
- $np(1-p) \ge 10$

7.6 Binomial Distribution

- The formula for the mean is $\mu = np$
- The formula for the standard deviation is

$$\sigma = \sqrt{np(1-p)}$$

 Find the z-score for X, and find the probability of the zvalue.

$$z = \frac{(x + 0.5) - \mu}{\sigma}$$

- Use key strokes 2nd DISTR 2 to pull up normalcdf(
- Then use the range -9999, z. It should look like: normalcdf(-9999,z).