UNIT 1
 EXPONENTS AND LOGARITHMS

AFM
Mrs. Valentine

1.1 FUNCTIONS

- Objective: I will be able to identify a relation as a function, evaluate a function for given values, graph a function, and determine the domain and range of a function.
- Vocabulary

Function	Relation	Domain	Range	Linear Function
Independent Variable	Dependent Variable	Evaluating a Function	Graph of a Function	Zeros of a Function
Vertical Line Test	Y-intercept			

1.1 FUNCTIONS

- Relations
- A relation is any set of ordered pairs.
- The set of all first components is called the domain (x-values)
- The set of all second components is called the range (y-values)
- Functions
- A relation in which each member of the domain corresponds to exactly one member of the range is a function.
- A function cannot have one x-value with two or more y-values
- A function can have two different x-values with the same y-value.

1.1 FUNCTIONS

- Functions as Equations
- Functions are usually given as equations rather than sets of ordered pairs.
- Ex: $y=0.012 x^{2}-0.2 x+8.7$
- In the example above, x , is the independent variable because it can be assigned any value from the domain.
- The dependent variable is y because its value depends on x.
- NOTE: Not all equations with the variables x and y define functions. Each x-value must produce only one y-value for the equation to represent a function.

1.1 FUNCTIONS

- Function Notation
- When an equation represents a function, the function is often named by a letter such as f, g, h, F, G, or H. (NOTE: any letter can be used.)
- The special notation $f(x)$
- Read as " f of x " or " f at x "
- x is the input and $f(x)$ is the output value of the function
- Represents the value of the function at the number x
- Ex: $y=0.012 x^{2}-0.2 x+8.7$ becomes $f(x)=0.012 x^{2}-0.2 x+8.7$

1.1 FUNCTIONS

- When a number is input for x , it replaces x in the special notation (Ex: $f(30)$).
- In this case, use 30 as the input and determine the output $f(30)$.

$$
\begin{gathered}
f(30)=0.012(30)^{2}-0.2(30)+8.7 \\
f(30)=10.8-6+8.7 \\
f(30)=13.5
\end{gathered}
$$

1.1 FUNCTIONS

- Graphs of Functions
- The graph of a function is the graph of its ordered pairs.
- To graph
- Choose x values.
- Compute $f(x)$ by evaluating $f(x)$ at x .
- Form the ordered pairs.
- Plot the values.
- All functions with equations of the form $f(x)=m x+b$ graph straight lines and are called linear functions.

1.1 FUNCTIONS

- Vertical Line Test
- Not all graphs in the regular coordinate system represent functions.
- Can use the vertical line test to determine if a graph is a function.
- Values of x paired with two or more different values of y form a vertical line.
- If any vertical line intersects a graph in more than one point, the graph does not define y as a function of x.

1.1 FUNCTIONS

- Obtaining Information from a Graph
- At the right or left of a graph you will find closed dots, open dots, or arrows.
- Closed dots - the graph does not extend beyond this point, and the point belongs to the graph.
- Open dots - the graph does not extend beyond this point, and the point does NOT belong to the graph.
- Arrows - the graph extends indefinitely in the direction in which the arrow points.

1.1 FUNCTIONS

- Identifying Domain and Range from a Graph
- Interval Notation
- Square brackets indicate endpoints that are included in an interval.
- Parentheses indicate endpoints that are not included in an interval
- Parentheses are always used with ∞ or $-\infty$
- Examples: Set-Builder Notation vs. Interval Notation
- Set-Builder: $\{x \mid-4 \leq x \leq 2\}$
- Interval Notation: [-4,2]

1.1 FUNCTIONS

- Identifying Intercepts
- The zeros of a function f are the x -values for which $f(x)=0$. (x intercepts).
- To find the y-intercept, find the point at which the graph crosses the y-axis $(f(0))$.
- A function can have more than one x-intercept but at most one yintercept.

1.2 EXPONENTIAL FUNCTIONS

- Objective
- I will be able to evaluate and graph exponential functions. I will be able to recognize the natural base e and use it in an exponential function.
- Vocabulary

Exponential Function	Base	Natural Base	Natural Exponential Function	Asymptote

1.2 EXPONENTIAL FUNCTIONS

- Evaluate Exponential Functions
- Functions whose equations contain a variable in the exponent are called exponential functions.
- The exponential function f with base b is defined by - $f(x)=b^{x}$ or $y=b^{x}$ where x is any real number
- b is a positive constant other than one $(b>0$ and $b \neq 1)$ called the base
- Use a calculator to evaluate exponential functions.

1.2 EXPONENTIAL FUNCTIONS

- Graphing Exponential Functions
- Recall that $a^{\frac{1}{2}}=\sqrt{a}$ and $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$
- In these cases, when the function is in the form b^{x}, x must be rational, causing holes at irrational domain values.
- The function $f(x)=b^{x}$ can be graphed at all values of x, meaning the graph will be continuous.

1.2 EXPONENTIAL FUNCTIONS

- Graphing
- Choose values of x and evaluate for $f(x)$.
- Plot the points and connect in a smooth curve.
- Note that graphs of exponential functions have a horizontal asymptote (a line they approach but never touch or cross).

1.2 EXPONENTIAL FUNCTIONS

- Characteristics of $f(x)=b^{x}$
-Domain: $(-\infty, \infty)$; Range: $(0, \infty)$
- y-intercept: (0, 1); no x-intercepts
- One-to-one function that has an inverse
- Horizontal asymptote: $y=0$ (x-axis)

1.2 EXPONENTIAL FUNCTIONS

- Transformations: $f(x)=a b^{c(x-h)}+k$

Transformation	Equation	Description
Vertical Translation	$f(x)=b^{x}+k$	- $k>0$ shift upward k units - $k<0$ shift downward k units
Horizontal Translation	$f(x)=a b(x-h)$	- $h>0 \quad(x-h)$ shift right h units - $h<0 \quad(x+h)$ shift left h units
Reflection	$f(x)=a b^{c x}$	- negative a reflects over $x-a x i s$ - negative c reflects over $y-a x i s$
Vertical stretch/shrink	$f(x)=a b^{x}$	-- >1 vertically stretches graph - $0<a<1$ vertically shrinks graph Horizontal stretch/shrink\quad- $c>1$ horizontally shrinks graph - $0<c<1$ horizontally stretches graph

1.2 EXPONENTIAL FUNCTIONS

- The Natural Base e
- Defined as the value that $(1+1 / n)^{n}$ approaches as n approaches infinity.
$\cdot e \approx 2.718281827$ or $e \approx 2.72$ when rounded to the nearest hundredth
- The function $f(x)=e^{x}$ is called the natural exponential function.

1.3 COMPOUND INTEREST

- Objective
- I will be able to use compound interest formulas.
- Vocabulary

Compound Interest	Principal	Compounded Semiannually	Compounded Quarterly	Continuous Compounding

1.3 COMPOUND INTEREST

- Compound Interest
- Interest computed on your original investment as well as on any accumulated interest.
- The initial amount invested is called the principal, P.
- The annual percentage rate of interest, r, is compounded once per year.

1.3 COMPOUND INTEREST

- For one year, the total amount in such an account can be represented by

$$
A=P+P r=P(1+r)
$$

- The formula for compound interest over time is

$$
A=P(1+r)^{t}
$$

1.3 COMPOUND INTEREST

- Interest can be compounded multiple times per year. When interest is compounded n times a year, we say that there are n compounding periods per year.

Name	\# Compounding periods/yr	Length of Each Period
Semiannual Compounding	$\mathrm{n}=2$	6 months
Quarterly Compounding	$\mathrm{n}=4$	3 months
Monthly Compounding	$\mathrm{n}=12$	1 month
Daily Compounding	$\mathrm{n}=365$	1 day

1.3 COMPOUND INTEREST

-The above formula can be adjusted for the number of compounding periods in a year.

$$
A=P(1+r / n)^{n t}
$$

- This formula gives the total amount with a principal investment, P, compounded n times per year at an annual rate of r over \dagger years.

1.3 COMPOUND INTEREST

- Continuous Compounding
- Compound interest where the number of compounding periods increases infinitely.
- The formula for compound interest is

$$
A=P e^{r t}
$$

1.4 LOGARITHMIC FUNCTIONS

- Objective
- I will be able to identify logarithmic functions and their properties. I will be able to convert between logarithmic and exponential forms.
- Vocabulary

Logarithmic Function	Logarithm	Exponential Form	Inverse Properties of Logarithms	

1.4 LOGARITHMIC FUNCTIONS

- Inverse Functions
- Only one-to-one functions have inverses that are functions.
- Pass the horizontal line test
- Inverse found by switching x and y, then solve for y
- If $f(a)=b$ then $f^{-1}(b)=a \quad$ (switch the domain and range)
- $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$
- Graph of f^{1} is the reflection of f about the line $y=x$

1.4 LOGARITHMIC FUNCTIONS

- Logarithmic Functions
- The inverse of $y=b^{x}$ is $x=b^{y}$
- New notation needed to solve for y, called logarithmic notation
- The inverse function of the exponential function with base b is called the logarithmic function with base b .
$\cdot y=\log _{b} x$ is equivalent to $b^{y}=x$ for $x>0$ and $b>0, b \neq 1$
$-y=\log _{b} x$ is called logarithmic form
- $b^{y}=x$ is called exponential form

1.4 LOGARITHMIC FUNCTIONS

- Knowing where the base and exponent are in each form will allow you to convert between the forms.

1.4 LOGARITHMIC FUNCTIONS

- Evaluating Logarithms
- Remembering that logarithms are exponents makes it possible to evaluate some logarithms by inspection.
- Ex: Evaluate $\log _{2} 32$
- Ask: 2 to what power gives 32?

$$
\begin{gathered}
2^{5}=32 \\
\log _{2} 32=5
\end{gathered}
$$

1.4 LOGARITHMIC FUNCTIONS

- Basic Logarithmic Properties
- Properties Involving 1
- $\log _{\mathrm{b}}=1$ because 1 is the exponent to which b must be raised to obtain $b\left(b^{\prime}=b\right)$
- $\log _{b} 1=0$ because 0 is the exponent to which b must be raised to obtain $1\left(b^{0}=1\right)$
- Inverse Properties of Logarithms (for $b>0$ and $b \neq 1$)
- $\log _{b} b^{x}=x$
- $b^{\log _{b} x}=x$

1.4 LOGARITHMIC FUNCTIONS

- Common Logarithms
- Logarithmic function with base 10 is called the common logarithmic function
- Usually expressed as $f(x)=l o g x$.
- Uses LOG key on calculator
- Properties:

Properties of Common Logarithms

General Properties

1. $\log _{b} 1=0$
2. $\log _{b} b=1$
3. $\log _{b} b^{x}=x\{$ Ineme
4. $b^{\log _{0} x}=x$ Proentien

Common Logarithms

1. $\log 1=0$
2. $\log 10=1$
3. $\log 10^{\gamma}=x$
4. $10^{\log x}=x$

1.4 LOGARITHMIC FUNCTIONS

- Natural Logarithms
- Logarithmic function with base e is called the natural logarithmic function.
- Usually expressed as $f(x)=\ln x$
- Uses LN key on calculator
- Properties:

Properties of Natural Logarithms

General Properties

1. $\log , 1=0$
2. $\log , b=1$
3. $\sin =1$ ते
4. $\log _{b} b^{x}=x\{1$ mene
5. $b^{\log x}=x \quad$ Mpertian

Natural Logarithms

1. $\ln 1=0$
2. $\operatorname{tn} e=1$
3. $\operatorname{In} e^{x}=x$.
4. $e^{\ln x}=x$

1.5 LOGARITHMIC GRAPHS

- Objective: I will be able to graph a logarithmic function including any transformations, and I will be able to determine its domain.
- Vocabulary:
\square
- Domain of Logarithmic Function

1.5 LOGARITHMIC GRAPHS

- Graphs of Logarithmic Functions
- Use the fact that logarithmic functions are the inverse of exponential functions
- Recall that the graph of a logarithmic function is the reflection of its inverse over the line $y=x$.

1.5 LOGARITHMIC GRAPHS

- The base will determine the shape of the graph:

1.5 LOGARITHMIC GRAPHS

- Characteristics of Logarithmic Functions in the form $f(x)=\log _{b} x$
-Domain: $(0, \infty)$; Range: $(-\infty, \infty)$
- Graphs of all logarithmic parent functions pass through (1,0)
- There is no y-intercept
- Asymptote: $\mathrm{x}=0$

1.5 LOGARITHMIC GRAPHS

- Transformations of $f(x)=a \log _{b} c(x-h)+k$

Transformation	Equation	Description
Vertical Translation	$f(x)=\log _{b} x+k$	- k>0 shift upward k units - $k<0$ shift downward k units
Horizontal Translation	$f(x)=\log _{b}(x-h)$	- $h>0(x-h)$ shift right h units (asymptote: $x=c$) - $h<0 \quad(x+h)$ shift left h units (asymptote: $x=-c$)
Reflection	$f(x)=a \log _{b} C x$	- negative a reflects over x-axis - negative c reflects over y-axis
Vertical stretch/shrink	$f(x)=a \log _{b} x$	- $a>1$ vertically stretches graph - $0<a<1$ vertically shrinks graph
Horizontal stretch/shrink	$f(x)=\log _{b} C x$	- $c>1$ horizontally shrinks graph - $0<c<1$ horizontally stretches graph

1.6 PROPERTIES OF LOGS

- Objective: I will be able to expand and/or condense logarithmic expressions using the product, quotient, and power rules. I will be able to convert from one base to another using the change-of-base property.

- Vocabulary:

Product Rule	Quotient Rule	Power Rule	Expanding a Logarithmic Expression	
Condense a Logarithmic Expression				

1.6 PROPERTIES OF LOGS

- The Product Rule
- Recall that when multiplying the same base, exponents are added: $b^{m *} b^{n}=b^{m+n}$
- Since logarithms are exponents, the product rule can be applied:

$$
\log _{b} M N=\log _{b} M+\log _{b} N
$$

$\cdot b, M \& N$ are positive real numbers; $b \neq 1$

- When the product rule is applied, it is called expanding a logarithmic expression.

1.6 PROPERTIES OF LOGS

-The Quotient Rule

- Recall that when dividing the same base, exponents are subtracted: $b^{m} / b^{n}=b^{m-n}$
- Since logarithms are exponents, the quotient rule can be applied:

$$
\log _{b} M / N=\log _{b} M-\log _{b} N
$$

$\cdot b, M \& N$ are positive real numbers; $b \neq 1$

1.6 PROPERTIES OF LOGS

- The Power Rule
- Recall that when raising an exponential expression to a power, multiply exponents: $\left(b^{m}\right)^{n}=b^{m n}$
- Since logarithms are exponents, the power rule can be applied:

$$
\log _{b} M^{p}=p \log _{b} M
$$

- b \& M are positive real numbers; $b \neq 1$; p is any real number
- Note that the graph of the expanded form may have a different domain than the original.

1.6 PROPERTIES OF LOGS

- Expanding \& Condensing Logarithmic Expressions
- Sometimes, more than one rule may need to be used when expanding or condensing a logarithmic expression.
- Condensing a logarithmic function uses the reverse of the above properties.
- Coefficients of logarithms must be 1 before you can condense them using the product and quotient rules.

1.6 PROPERTIES OF LOGS

- Change-of-Base Property
- For any logarithmic bases a and b, and any positive number M,

$$
\log _{b} M=\log _{a} M / \log _{a} b
$$

- Base b is the original base while base a is the new base being introduced.
- This property can be used with common logarithms and natural logarithms, as well.

1.7 EQUATIONS

- Objective - I will be able to solve exponential and logarithmic equations. I will be able to apply solving these equations to practical applications.
- Vocabulary

Exponential Equation Logarithmic Equation

1.7 EQUATIONS

- Exponential Equations
- An exponential equation is an equation containing a variable in an exponent.
- Some exponential equations can be solved by expressing each side as a power of the same base.
- If $\mathrm{b}>0$ and $b \neq 1$, and $b^{M}=b^{N}$, then $\mathrm{M}=\mathrm{N}$.

1.7 EQUATIONS

- Most cannot be written so that each side has the same base.
- Use logarithms!
- If $M=N$, then $\log _{b} M=\log _{b} N$
- If the exponential equations involves base 10 , use common logarithms.
- If it involves any other base, use natural logarithms.

1.7 EQUATIONS

- Using the Definition of a Logarithm to Solve Logarithmic Equations
- A logarithmic equation is an equation containing a variable in a logarithmic expression.
- Some logarithmic equations can be expressed in the form $\log _{b} M=c$
- Re-write these in exponential form ($b^{c}=M$) and solve for the variable.
- Check proposed solutions. Include only values for which $M>0$.
- Note: x can still be a negative number so long as $M>0$.

1.7 EQUATIONS

- Some logarithmic equations can be expressed in the form $\log _{b} M=\log _{b} N$
- Use the one-to-one property to write without logarithms ($M=N$) and solve for the variable.
- Check proposed solutions. Include only values for which $\mathrm{M}>0$ and $\mathrm{N}>0$.

1.8 GROWTH AND DECAY

- Objective - I will be able to model exponential growth and decay. I will be able to use logistic growth models for limited growth applications, and I will be able to re-write an exponential equation in the natural base.
- Vocabulary

Exponential Growth	Exponential Decay	Half-Life	Correlation Effect	

1.8 GROWTH AND DECAY

- Model Exponential Growth and Decay
- With exponential growth or decay, quantities grow or decay at a rate directly proportional to their size.

1.8 GROWTH AND DECAY

- Given by the model:

$$
f(t)=A_{0} e^{k t} \quad \text { or } \quad A=A_{0} e^{k t}
$$

- If $\mathrm{k}>0$, the function models the amount, or size, of a growing entity.
- A_{0} is the original amount of the growing entity at time $\dagger=0$
- A is the amount at time \dagger
- k is a constant representing growth rate
- Ex: population growth

1.8 GROWTH AND DECAY

- If $k<0$, the function models the amount, or size, of a decaying entity.
- k is a constant representing decay rate
- Ex: half-life

(a) Exponential growth

(b) Exponential decay

1.8 GROWTH AND DECAY

- Logistic Growth Models
- Logistic growth model: function used to model situations in which growth is limited.
- Mathematical Model:

$$
f(t)=\frac{c}{1+a e^{-b t}} \quad \text { or } \quad A=\frac{c}{1+a e^{-b t}}
$$

- a, b, and c are constants with $a>0$ and $b>0$
- $y=c$ is a horizontal asymptote for the graph of the function
- c represents the limiting size that A can attain (A cannot be bigger than c)

1.8 GROWTH AND DECAY

- Modeling Data
- Scatter plots can show data that is exponential, logarithmic, and/or linear.

1.8 GROWTH AND DECAY

- A correlation coefficient, r, is a measure of how well the model fits the data.
- $-1 \leq r \leq 1 ; r>0$ indicates a direct relation. $\mathrm{r}<0$ indicates an inverse relation.
- The closer to 1 or $-1 r$ is, the better a model fits the data.

1.8 GROWTH AND DECAY

- Expressing an Exponential Model in Base e
- Recall that $y=a b^{x}$ is equivalent to $y=a e^{(\ln b) x}$
- Re-writing the equation in this shows the rate of growth or decay.

