

3.1 Trig and Periodic Functions Obj.: I will be able to use a unit circle to find values of sine, cosine, and tangent. I will be able to find the domain and range of sine and cosine. I will understand even and odd trigonometric functions and be able to use their periodicity. Vocabulary

3.1 Trig and Periodic Functions

• Unit Circle

- A unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system.
- Equation: $x^2 + y^2 = 1$
- In a unit circle, the radian measure of the central angle is equal to the length of the intercepted arc.
- If the angle, t, is a real number in radians, then for each t, there corresponds a point *P(x,y)* on the unit circle.

3.1 Trig and Periodic Functions

- Even and Odd Trigonometric Functions
 - A function is even if f(-t) = f(t) and odd if f(-t) = -f(t).
 - The cosine function is an even function
 - The sine function is an odd function.

3.1 Trig and Periodic FunctionsOn the figure to the right: *P*:(cos *t*, sin *t*) *Q*:(cos (-*t*), sin (-*t*)) The x-coordinates of P and Q are the same, thus cos(-*t*) = cos *t*The y-coordinates of P and Q are negatives of each other, thus sin (-*t*) = -sin *t*

3.1 Trig and Periodic Functions

• Repetitive behavior of sine, cosine, and tangent functions:

 $\sin(t+2\pi n)=\sin t$

 $\cos(t+2\pi n) = \cos t$

$$\tan(t + \mathbf{\pi} n) = \tan t$$

where n is the number of full cycles.

- *Obj.*: I will be able to graph sine functions and the variations. I will be able to determine amplitude, period, and phase shift for a sine graph.
- Vocabulary

Sine Curve	Amplitude	Phase Shift	

- The graph of *y* = sin *x* will have the following properties:
 - Domain: $(-\infty,\infty)$ and Range: [-1,1]
 - Period: 2π
 - Odd function: sin(-x)= -sinx

3.2 Graphs of Sine

- Graphing Variations of y = sin x
 - One complete cycle of the sine curve includes three x-intercepts, one maximum point, and one minimum point.
 - The key points on the graph can be found using the equations below to find the x-values, and evaluate the function at each x to

find the y-values.

- Graphing $y = A \sin (Bx-C), B > 0$
 - Amplitude
 - Maximum height of the graph
 - Equal to |A|
 - Period = $2\pi/B$
 - Phase Shift
 - The horizontal shift to the sine graph
 - New starting point: C/B
 - One period is $C/B \le x \le (C/B + 2\pi/B)$

- Steps for graphing:
 - Identify the period, amplitude, and phase shift.
 - Find the x-values for the 5 key points, starting at the beginning of the cycle.
 - Find the y-values for the 5 key points by evaluating the function at each value of x from the second step.
 - Connect the five key points with a smooth curve and graph one complete cycle.
 - Extend the graph to the left or right as needed.

- The Graph of y = cos x
 - Graph *y* = cos *x* by listing some points on the graph.
 - Graph the function on the interval [0,2π] because the period is 2π.
 - The rest of the graph is made up of repetitions of this portion.

3.3 Graphs of Cosine

- Graphing Variations of y = cos x
 - Graphing $y = A \cos (Bx-C)$, B>0
 - Amplitude: |A|
 - Period: $2\pi/B$
 - Phase Shift: C/B(One period is $C/B \le x \le C/B + 2\pi/B$)
- Steps for graphing are the same as for graphs of sine functions.

3.4 Vertical Shifts and Periodic Models

• Obj.: I will be able to translate the graph of a sine and/or cosine function vertically. I will be able to apply graphing sine and cosine functions to modeling data.

3.4 Vertical Shifts and Periodic Models

- Vertical Shifts of Sinusoidal Graphs
 - Forms: $y = A \sin (Bx-C) + D$ and $y = A \cos (Bx-C) + D$
 - Constant D causes a vertical shift in the graph.
 - If D is positive, the graph shifts upward D units
 - If D is negative, the graph shifts downward |D| units

3.4 Vertical Shifts and Periodic Models

- Oscillations are now around line y=D
 - Maximum value of y is D + |A|
 - Minimum value of y is D |A|
- Modeling Periodic Behavior
 - Periodic data can be better understood by graphing.

3.4 Vertical Shifts and Periodic Models

- Additionally, some graphing calculators have a SINe REGression feature.
 - Minimum of four points required
 - Gives the function in the form
 y = A sin (Bx-C)+D of the best fit for wavelike data.

3.5 Applications

- Obj.: I will be able to solve right triangles. I will be able to apply trigonometric functions to trigonometric bearings and simple harmonic motion.
- Vocabulary

Solving a right triangle	Bearing	Simple Harmonic Motion	Equilibrium Position	Frequency
		Motion	1	L

3.5 Applications

- Each bearing has three parts: a letter (N or S), the measure of an acute angle, and a letter (E or W).
- 1. Start with the north/south side (N if the north side of the north-south line, S if the south side of the north-south line)
- 2. Write the measure of the acute angle.
- **3**. If the acute angle is measured on the east side of the north-south line, write E last. If on the west side, write W last.

3.5 Applications

- Frequency: $f = \omega/2\pi$, $\omega > 0$
 - Describes the number of complete cycles per unit time.
 - Reciprocal of the period: f = 1/period