

3.1 Quadratic Graphs

-Objective
ol will be able to identify quadratic functions and their vertices, graph them and adjust the height and width of the parabolas.

- Vocabulary

- Standard Form of a Quadratic Function	- Parabola		
- Axis of Symmetry	• Vertex	• Minimum	• Maximum
- Quadratic Function	- Quadratic Parent Function		

3.1 Quadratic Graphs

-Quadratic Functions

- Nonlinear (rate of change is not constant)
-Standard Form of Quadratic Function: $f(x)=a x t 2+b x+c$ where ${ }_{a \neq 0}$
${ }^{\circ}$ Quadratic Parent Function: $\kappa(x)=x 2$ or $y=x z^{\prime}$ (simples \dagger quadratic)

3.1 Quadratic Graphs

oldentifying a Vertex
-The graph of a quadratic function is called a parabola - U-shaped curve
-Symmetrical (has an axis of symmetry) -Has a maximum (opens down) or minimum (opens up)

3.1 Quadratic Graphs

- Highest or lowest point of a parabola is the vertex (h, k) ${ }^{\circ}$ Coordinate point -On the axis of symmetry

$\mathbf{a}>\mathbf{0}$ (positive)	$\mathbf{a}<\mathbf{0}$ (negative)
minimum	maximum
Range: $y \geq k$	Range: $y \leq k$

3.1 Quadratic Graphs

-Graphing Parabolas
-When $y=a r 2$
-Use symmetry to graph quickly
-Find the coordinates of the vertex and a couple points on one side of the vertex. Reflect the points across the axis of symmetry.
-Axis of symmetry is the y-axis ($x=0$)

- Vertex is the origin $(0,0)$

3.1 Quadratic Graphs

-When $y=a r 2+c$
-The y-axis is the axis of symmetry in this form.
-The value of "c" translates the graph up or down \rightarrow vertex is ($0, ~ c$)
-Comparing Widths of Parabolas
-The lead coefficient (a) affects the width of a parabola.
-When $|m|<|n|$, the graph of $y=m \times 2$ is wider than the graph of $y=m \times r n$.

3.1 Quadratic Graphs

-Falling Object Model

- As an object falls, speed continues to increase as height decreases
Ignoring air resistance, the object's height can be modelled with the function $t=-16 t 2+c$
-Height (h) is in feet
-Time (t) is in seconds
olnitial height (c) is in feet

3.2 Quadratic Functions

-Objective
I will be able to graph and analyze quadratic functions in the form $y=a x^{2}+b x+c$. I will be able to find a parabola that fits through any three nonlinear points.

- Vocabulary
- None

3.2 Quadratic Functions

${ }^{\circ}$ Graphing $y=a x t 2+b x+c$
-Y-intercept: c
-Axis of Symmetry: $x=b b-2 a$

- Vertex (h, k)
${ }^{\circ}$ On the axis of symmetry
-Finding vertex:
- $h=b /-2 a$
- $k=a h \uparrow 2+b h+c$

3.2 Quadratic Functions

ofind the vertex, the y-intercept, and a few other points, then plot the graph.
${ }^{\circ}$ Check:
-Does the parabola open the right way?
ols the parabola symmetrical?
Is the vertex on the axis of symmetry?

3.2 Quadratic Functions

-Using the Vertical Motion Model
olf an object is projected into the air with an initial upward velocity, v, an initial height, c, and time, \dagger, continues with no additional force acting on it, the formula
$h=-16 t \uparrow 2+v t+c$.

3.2 Quadratic Functions

-Writing an Equation of a Parabola
-You can use the standard form of the quadratic function and any three points of the parabola to find an equation.
off three points are nonlinear, no two of which are in line vertically, then they are on the graph of exactly one quadratic function.
-This method uses a system of linear equations to find a, b, and c .

3.2 Quadratic Functions

-Using Quadratic Regression

- Quadratic regression is a process used to find the equation of a parabola that "best fits" a set of coordinates. -Best to use three or more nonlinear points.

3.2 Quadratic Functions

${ }^{\circ}$ Need the following steps in the graphing calculator: oPress the "STAT" button -Select " 1 : Edit"
-Enter your x-values in L1
-Enter your y-values in L2
oPress the "STAT" button again.
-At the top of the screen, scroll to "CALC" oSelect "5:QuadReg"
-The resulting screen will give you the a, b, and c values of the quadratic equation in standard form.

3.2 Quadratic Functions

- QuadReg

```
    y=ax2}+bx+
    a=345.1428571
    b=-1705.657143
    c=42903.6
    R}\mp@subsup{R}{}{2}=.90348649
```

- R^{2} indicates how well the parabola fits. The closer to " 1 ," the better the fit.

3.3 Solving Quadratic Equations

-Objective
I will be able to solve quadratic equations using graphing and/ or square roots. I will be able to evaluate whether a solution is reasonable given an application of quadratics.
-Vocabulary

- Zero of a Function	- Root of an Equation
- Quadratic Equation	- Standard Form of a Quadratic Equation

3.3 Solving Quadratic Equations

-Solving by Graphing
-A quadratic equation is an equation written in the form ${ }_{a x t 2}$ $+b_{x+c}=0$ where ${ }_{a \neq 0}$.
-This is the standard form of a quadratic equation.
-Solutions to a quadratic equation are the x-intercepts of its related parabola.
-Often called roots of the equation or zeros of the function.

- Quadratics can have 0, 1, or 2 real solutions.
-May be real or imaginary. For now, we'll focus on real solutions.

3.3 Solving Quadratic Equations

-Solving Using Square Roots
${ }^{\circ}$ Equations in the form ${ }_{x 2=k}$ can be solved by finding the square root of each side.
-Remember that when taking a square root, you get both a positive and negative value. (Ex: For $x 2=81$, the solutions are $\pm \sqrt{61}= \pm 9$.)
oRearrange the equation for the x^{2} term BEFORE taking square roots.
-Works only when $\mathrm{b}=0$ or in completed square form.

3.3 Solving Quadratic Equations

-Choosing a Reasonable Solution
In many cases when solving real-world problems modeled by quadratic equations, the negative square root may not be a reasonable solution.
${ }^{\circ}$ Finding length
oFinding time elapsed
oFinding mass, etc.

3.4 Factoring to Solve

-Objective

- I will be able to use factoring and the zero product property to solve quadratic equations. I will be able to use the factored form of a quadratic equation to graph its parabola.
- Vocabulary
- Zero Product Property

3.4 Factoring to Solve

-Zero-Product Property
-Multiplication Property of Zero: for any real number, a, $a * 0=0$
-Zero Product Property: for any real numbers a and b, if $a b=0$, then $a=0$ Or $b=0$.
${ }^{\circ}$ Quadratic equations written in factored form can be solved using the zero product property.

3.4 Factoring to Solve

-Solving by Factoring -Once a quadratic equation is in standard form ($\left(\begin{array}{c} \\ (2)+b x+c=0\end{array}\right)$, factor the quadratic to put it in factored form. You may have to add or subtract terms to both sides to put it in standard form.

3.4 Factoring to Solve

-GCF - all quadratic equations, usually followed by another method
$\left.\begin{array}{l}\text {-Reverse FOIL } \\ \text {-Tic-Tac-Toe Method }\end{array}\right\}$ terms, not perfect squares
-Difference of Squares - subtraction of two perfect squares
-Perfect Square Trinomial - 3 terms, perfect squares
${ }^{\circ}$ Grouping - 4 terms with common binomial factor.
-Use the zero product property to solve the equation.

3.4 Factoring to Solve

-Using Factored Form to Graph a Function

- You can find the zeros of the function from factored form. oThe axis of symmetry is in the middle of the zeros, so you can average them together to find the axis of symmetry ($x=h$).
${ }^{\circ}$ Calculate ${ }_{f(t)}$.
oPlot the three points and draw the parabola through them.

3.6 Completing the Square

-Objective
ol will be able to find values to complete the square, find the vertex using the completed square form, and solve quadratic equations using after the equation has been converted.

- Vocabulary
- Completing the Square

3.5 Completing the Square

-Finding c to Complete the Square
-You can change the expression $x t+b x$ into a perfect-square trinomial by adding $(b / 2) \pi 2$ to $x(2 x+b x$.
-This is called completing the square.
-The process is the same whether b is positive or negative.

3.5 Completing the Square

-Solving $x \not 2+b x+c=0$
-Start by subtracting c from both sides of the equation.
-Add $(6 / 2) \pi$ to both sides of the equation.
oFactor the new perfect-square trinomial.
-Take the square root of both sides.
-Write as two equations (taking the square root gives both a positive and negative).
-Solve for x in each equation.

3.5 Completing the Square

-Finding the Vertex by Completing the Square
oThe equation $y=\alpha(x-k) r t+k$ is called the completed square form, or vertex form, of a quadratic equation.
-The vertex can be found by changing the sign of the value in the parentheses for h and keeping k as is. (h, k)
${ }^{\circ}$ Completing the Square when ${ }_{a \neq 1}$
-Divide all terms by a.
oSolve by completing the square using the same procedure from this point forward.

3.6 Quadratic Formula \& Discriminant

-Objective
ol will be able to use the quadratic formula to find solutions to quadratic equations. I will be able to select the best method for solving quadratic equations and use the discriminant to predict how many real solutions a quadratic equation will have.

- Vocabulary
- Quadratic Formula - Discriminant

3.6 Quadratic Formula \& Discriminant

- Quadratic Formula
- A quadratic equation can have two, one, or no real-number solutions (never more than two).
-Any quadratic equation in standard form
($a \times 12+b x+c=0, a \neq 0)$ can be solved using the quadratic formula:
$x=-b \pm \sqrt{b} / 2-4 a c / 2 a$
-When the radicand in the quadratic formula is not a perfect square, you can use a calculator to approximate (round) the solutions of an equation.

3.6 Quadratic Formula \& Discriminant	
oChoosing an Appropriate Method	
Method	When to Use
Graphing	If you have a graphing calculator handy
Square Roots	If the equation has no x-term
Factoring	If you can factor the equation easily
Completing the Square	If the coefficient of x^{2} is 1, but cannot easily factor
Quadratic Formula	If the equation cannot be factored easily or at all.

3.6 Quadratic Formula \& Discriminant

-Using the Discriminant
-The discriminant is the radicand of the quadratic formula: $b \uparrow 2-4 a c$

- Can be used to determine how many real solutions a quadratic equation has
olf positive: 2 real solutions
olf zero: 1 real solution
off negative: 0 real solutions

3.7 Complex Numbers

-Objective
ol will be able to simplify the square root of a negative number, plot complex numbers in the complex plane, and find the absolute value of a complex number. I will be able to add, subtract, multiply, and divide complex numbers.

- Vocabulary
- Imaginary Unit • Imaginary Number • Complex Number
- Complex Number Plane \quad - Pure Imaginary Number
- Absolute Value of a Complex - Complex Conjugates Number

3.7 Complex Numbers

-Simplifying a Number Using i
*Complex numbers are based on a number whose square is -1
-The imaginary unit (i)
othe complex number whose square is -1 (in=-1)

- $i=\sqrt{ }-1$
-For any positive number, $\mathrm{a}, \gamma-a=-1-1+a=v-1+\sqrt{ } a=i v a$

3.7 Complex Numbers

-Graphing in the Complex Number Plane
${ }^{-1 m a g i n a r y}$ number: any number in the form $a_{a+b i}$ where a and b are real and ${ }_{b \neq}$.
olf $t=0$, the number is real.
-Pure imaginary number: $a=0$ and $b \neq 0$

3.7 Complex Numbers

${ }^{\circ}$ Complex Number Plane

- Just like the real coordinate plane.
${ }^{\circ}$ Point ${ }_{(a b)}$ represents ${ }_{a+b i}$
-Real numbers are on the horizontal axis while imaginary part is on the vertical axis.
-Absolute Value of a Complex Number -The distance from the origin to the point in the complex plane
- $|a+b i|=\sqrt{ } a \uparrow 2+b \uparrow 2$

3.7 Complex Numbers

-Adding and Subtracting Complex Numbers
-Add/subtract like terms (real numbers with real numbers, imaginary numbers with imaginary numbers).
olf the sum of two complex numbers is 0 or ${ }_{0+0 i}$, each number is the additive inverse of the other.
-Multiplying Complex Numbers
${ }^{\circ}$ Multiply complex numbers ${ }_{a+b i}$ and ${ }_{c+d i}$ like any other binomials.
(bi) $(d i)=b d i \uparrow 2=-b d$

3.7 Complex Numbers

-Dividing Complex Numbers
${ }^{\circ}{ }_{a+b i}$ and ${ }_{a-b i}$ are complex conjugates because they multiply to a real number.
-Multiply the numerator and denominator by the complex conjugate of the denominator and simplify.
-Finding Imaginary Solutions
-Every quadratic has exactly two complex number solutions
(that sometimes are real numbers).

3.8 Systems of Equations

-Objective

- l will be able to solve a system of equations involving quadratic equations using graphing, elimination, and substitution.
-Vocabulary
- Substitution Method \quad - Elimination Method
- Solution of a System of Equations

3.8 Systems of Equations

- Solving by Graphing
-Solution of a system of equations
- Coordinates that make all equations true
- Written as coordinate pairs
olntersection points of graphs
-Systems of linear and quadratic equations

3.8 Systems of Equations

-Solving by Elimination
-Add or subtract the equations to cancel out a variable.
-Solve the remaining equation for the left over variable.
-Substitute the known variable back into one equation to find the second.
-Write answers as coordinate pairs.

3.8 Systems of Equations

-Solving by Substitution
-Replace one variable with an equivalent expression containing the other variable.
oEasiest if you solve both equations for the same variable, and then set the two equations equal to each other.

3.8 Systems of Equations

-Solving with a Graphing Calculator
oEnter the equations on the $\mathrm{Y}=$ screen.
oPress "graph" to display the system
-Use the "CALC" feature. Select "INTERSECT" and place the cursor close to a point of intersection. Press "enter" 3 times.
-Repeat the steps for each intersection.

