

4.1 Product Rule

- Objective
- I will be able to multiply powers whenthey have the same base, including simplifying algebraic expressions and scientific notation. 1ulloe able to evaluate expressions with rational exponents.
- Vocabulary
- Base \quad o Scientific Notation

4.1 Product Rule

- Multiplying Powers
-When multiplying powers with the same base, add the exponents.
- Base - number raised to an exponent
- Exponent - a number that tells how many times the base should be multiplied by itself.
- The rule:
- $a^{m *} a^{n}=a^{m+n}$ where $a \neq 0$ and m \& n are rational
- $a^{m *} b^{n}=a^{m} b^{n}$ (cannot combine exponents with different bases)
4.1 Product Rule
-... in Algebraic Expressions
-When multiplying algebraic terms together, multiply the coefficients and add the exponents.
-THE BASE STAYS THE SAME
- Don't forget to add the assumed " 1 " if no exponent is listed (Ex: $\left.d^{2 *} d=d^{3}\right)$

4.1 Product Rule

-... with Scientific Notation

- Scientific Notation -any number written as $a \times 10^{b}$, where $1 \leq a<10$.
- a is the coefficient, 10 is the base.
- If you move the decimal to the right, subtract
- If you move the decimal to the right, subtract
from the exponent. If you move the decimal to the left, add to the exponent.
- Ex: 256000 is written as 2.56×10^{5}
- Ex: 0.000345 is written as 3.45×10^{-4}
4.1 Product Rule

- Can be multiplied just like algebraic expressions with the same base.
- In your calculator, 4.567×10^{14} appears aso
4.567E14.
- It is okay to leave negative exponents in scientific notation.

4.1 Product Rule

- Simplifying Expressions with Rational Exp onents
- Fractional exponents are called rational exponents.
- If $a^{1 / m}=b$, then $a=b^{m}$
- You can use this (or your calculator) to simplify expressions with rational exponents. - If you use your calculator, you MUST put the rational exponent in parentheses!!

4.1 Product Rule

- Additional Rules to Remember
- Zero as an Exponent: $a^{0}=1$ where $a \neq 0$
- Negative Exponents Property: a n $f 1 / a$ where $a \neq 0$ and n is rational

4.2 Power Rule

- Objective
- I will be able to raise powers to powers, raise products to powers, and apply theserules to scientific notation.
- Vocabulary
- None

4.2 Power Rule

- An item raised to a power may be raised to a second power by multiplying the powers.
-The base stays the same
- $\left(x^{m}\right)^{n}=x^{m n}$

- If a monomial in parentheses is raised to a power, that power must be applied to each factor in the parentheses.
$\cdot(x y)^{n}=x^{n} y^{n}$

4.2 Power Rule

- If a polynomial is parentheses is raised to a power, rewrite as separate factors and use polynomial multiplication
- NOTE: Many theorems and procedures exist to speed this process and are covered in units on polynomials. Chief among them is Binomial Theorem and FOIL.
- For numbers in Scientific Notation:
- Use the distributive property of exponepts
- Put back in scientific notation

4.2 Power Rule

-Remember your order of operations:

- Parentheses
- Exponents
- Multiplication and Division
- Addition and Subtraction
- Though not a required step in the order of operations, grouping terms can sometimes make it easier to see what goes together.

4.3 Quotient Rule

- Objective
- I will be able to divide powers with dike bases and take the power of a quotient. Lwill be able to apply these rules to scientific notation.
- Vocabulary
- None

4.3 Quotient Rule

- To divide two numbers with the same base, subtract the exponents
-Rule: $\frac{x^{m}}{x^{n}}=x^{m-n}$
- NOTE: For exponents, division is subtraction

4.3 Quotient Rule

- Remember Negative Exponents mean division
-Rule: $x^{-n}=\frac{1}{x^{n}}$
- Note: Simplify a single term withexponents means to make it so that each variable appears only once and that all exponents are positive. Remember "terms" do not have addition or subtraction.

4.3 Quotient Rule
- The power of a quotient is the quotient of the powers
-Rule: $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
- Note: be sure to evaluate powers with numerical bases
- Bringing it together
- Break down the problem, thenchandle each set of numbers and each variable in turn.
- Group coefficients (numbers), and group the like bases.

4.3 Quotient Rule

- Division and Scientific Notation
- Group the numbers and the 10 s justlike before.
- Put it back in scientific notation.

4.4 Radicals and Rational Exponents

- Objective
- I will be able to identify parts of a radical expression and convert between rational exponents and radical expressions.
- Vocabulary
- Index

4.4 Radicals and Rational Exponents

- Anatomy of a radical:

-When no index is shown, it is $2: \sqrt{a}=\sqrt[2]{a}$

4.4 Radicals and Rational Exponents
- For a real number, a, and positive integer's and
n,
$a^{\frac{1}{n}}=\sqrt[n]{a}$
$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$

4.4 Radicals and Rational Exponents

- Converting to exponents allows us to simplify radicals that before we could not.
- Consider

$$
\begin{aligned}
& \sqrt[3]{x^{2}} * \sqrt[5]{x} \\
& =x^{\frac{2}{3}} * x^{\frac{1}{5}}
\end{aligned}
$$

$$
=x^{\frac{13}{15}}
$$

$$
=\sqrt[15]{x^{13}}
$$

4.5 Inverse Variation

- Objective
- I will be able to identify direct and inverse variations. I will be able to calculate the constantof variation and set up a model for each variation. Twe able to identify, model, and manipulate combined variations.
- Vocabulary

4.5 Inverse Variation
- Objective
- I will be able to identify direct and inverse variations. I
will be able to calculate the constantof farilation and
set up a model for each variation. Ty be able to
identify, model, and manipulate combined variations.
- Vocabulary
o Direct Variation o Inverse Variation o Asymptote o Constant of Variation o Joint Variation o Combined Variation

4.5 Inverse Variation

- Direct Variation
$\cdot y=k x$ (a line through the origin)

- Constant of Variation (k): given aset of data, for each point y / x is constant. Therefore, $k=y / x$.

4.5 Inverse Variation

- Inverse Variation
- $y=k / x$

- Constant of Variation (k): given set of data, for each point $x y$ is constant. Therefore, $k=x y$.
- Inverse variation graphs have asymptotes (lines the graph approaches but never touches).

4.5 Inverse Variation

- Combined Variation
- A relation in which one variable varies with respect to each of two or more variables.
- Ex: $y=k z / x$
- Joint Variation
- A direct variation of the product of two or more variables.
- Ex: y=kxz
- Type of combined variation

- Constant of Variation (k): given a set of data, for each point $y / x z$ is constant. Therefore, $k=y / x z$.
4.6 Transformations of Inverse Variations
- Objective
- I will be able to recognize reciprocal functions, analyze how reciprocal functions have been transformed, and sketch reciprocal functions.
- Vocabulary
- Branch \quad - Reciprocal Function

4.6 Transformations of Inverse Variations

- Reciprocal Function Family
- Parent function: $y=1 / x$
- Always goes through points (1,1) and ($-1,-1$)
- Asymptotes: approaches butnever reaches $x=0$ and $\mathrm{y}=0$
- Domain: $x \neq 0$
- Range: $y \neq 0$

4.6 Transformations of Inverse ぬariations

- General Equation for a Reciprocalfunction

$$
y=\frac{a}{x-h}+k \quad \text { where } a \neq
$$

- Always goes through points $(h+r k+a)$ and (h-1, k-a)
- Asymptotes: approaches but never reaches $x=h$ and $\mathrm{y}=\mathrm{k}$
- Domain: $x \neq h ;$ Range: $y \neq k$
- Reflections: a < o means the graph is flipped over the x-axis
- Translations: Graph moved right h units, and up k units (left and down if h and k are negative).

4.7 Simplifying Radicals

- Objective

- I will be able to simplify square roots and radicals of other indexes. I will be able to simplify products of radicals with different indexes. I will peabe to rationalize the denominator.
- Vocabulary
- Radical Expression
- Rationalize the Denominator
4.7 Simplifying Radicals
- Simplifying Square Roots by Perfect Squares
- Factor out the largest square you can find.
-Evaluate that square root, carry the rest.
- Check for any squares you missed.

4.7 Simplifying Radicals

-The Perfect Squares

x	x^{2}
1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100

x	x^{2}	x	x^{2}
11	121	21	441
12	144	22	484
13	169	23	529
14	196	24	576
15	225	25	625
16	256	26	676
17	289	27	729
18	324	28	784
19	361	29	841
20	400	30	900
		11	

4.7 Simplifying Radicals

- Simplifying Radicals by Prime Factorization
- Factor into prime factors
- Group the factors
- Divide powers of each factor by the index (use remainders)
- Simplify
-Recombine terms
-Rational Exponents

- Rational exponents can be used instead of radicals.
- This is often useful when dealing with different indexes.

4.7 Simplifying Radicals

- Rationalizing the denominator

-To rationalize the denominator multiply the original fraction by the radical in the denominator over itself and simplify.

4.8 Radical Equations

- Objective
- I will be able to recognize radical equations and solve them. I will be able to identify and gliminate extraneous solutions.
- Vocabulary

| O Radical
 Equation | O Extraneous
 Solutions | Runction |
| :--- | :--- | :--- |\quad| Square Root
 Equation | o Square Root
 Function |
| :--- | :--- |

4.8 Radical Equations

- Radical Equations

- Equations with the variable in the radicand.
-Ex: Radical Equations NOTRadical Equations

$$
\begin{array}{cc}
3+\sqrt{x}=10 & \sqrt{3}+x=1 \\
\sqrt{(x-2)}-5=21 & \sqrt{9}=x \\
(x+8)^{\frac{2}{3}}=25 & 2 x+\sqrt{16}=7
\end{array}
$$

4.8 Radical Equations

- Solving Radical Equations
- Isolate the radical to one side of the equation
- Raise both sides of the equation te the same power
- Simplify
- Check your Extraneous Solutions
- Solutions that do not work when you check them.
- Not part of your answer.
- If all solutions are extraneous, there is "no solution."
- NOTE: Squares and square roots are inverses (cube and cube root are inverses, and so on).

4.9 Transformations

- Square Root Functions
- Parent Function: $y=\sqrt{x}$
- General Form:

$$
y=a \sqrt{x-h}+k
$$

- $\mathrm{a}<0$ reflects graph over x -axis
- $\mathrm{a}>1$ stretches graph; $0<\mathrm{a}<1$ shrinks graph
-Translation:
- Horizontal: h (positive \rightarrow right, negative \rightarrow left)
- Vertical: k (positive \rightarrow up, negative \rightarrow down)

4.9 Transformations

- Radical Functions
- Parent Function: $y=\sqrt[n]{x}$
- General Form:

$$
y=a \sqrt[n]{x-h}+k
$$

- $\mathrm{a}<0$ reflects graph over x-axis
$\cdot \mathrm{a}>1$ stretches graph; $0<a<1$ shrinks graph
-Translation:
- Horizontal: h (positive \rightarrow right, negative \rightarrow left)
- Vertical: k (positive \rightarrow up, negative \rightarrow down)
4.9 Transformations
- Solving Radical Equations by Graphing
- Plot the graph
- Use your calculator to find the zeros
- Y1 = (plot function)
- Press $2^{\text {nd }}$ then TRACE
- Select 2: zero
- Move cursor near x-intercept, select left
boundary and right boundarythen press enter again.

4.9 Transformations

- Rewriting a Radical Function
- If you simplify the radical so that x has a coefficient of 1 , you can graph the function using its transformations.
- $y=a \sqrt[n]{b x+c}+k$
- Solve so b=1
- Then $\mathrm{c}=\mathrm{h}$

