Chapter 9 Motion

Mrs. Valentine
$4^{\text {th }}$ and $6{ }^{\text {th }}$ Periods

Section 1

Describing and Measuring Motion

- Motion is everywhere. When you walk to class, change seats, go to lunch, and play at recess, you are in motion.
- Definition: Motion - the distance of one object from another is changing.

0^{-}Since the distance between you and the walls of the room is not changing, you can conclude that you are not in motion.

Recognizing Motion

- However, even though you are staying in your seat, you are still in motion in other ways.
- For example, you are currently moving $30 \mathrm{~km} / \mathrm{s}$. To give you an idea of how fast this is, if you were to fly a plane this quickly, you could travel from NYC to LA in about 2 minutes.

- You are moving at this rate because the Earth is spinning at this rate, and therefore everything on Earth is moving at this rate.

Recognizing Motion

- Motion can be dependent on point of view.
- For example, if you compare a book on your desk to the floor, it may not be in motion.

- Something to think about: Two people are in space, looking out the windows of their ships. The person in ship A sees the person in ship B passing them. Conversely, the person in ship B sees the person in ship A passing them. Who is moving?

Recognizing Motion

- To answer the question, you need still object to compare the ships to.
- Definition: Reference Point - a place or object used for comparison to determine if something is in motion.
- The reference point is assumed to be stationary.

Choosing a Reference Point

- Choosing a reference point can be tricky.
- For example, if you are riding in a car, you would want to pick a reference point that is not moving at the same approximate speed you are.
- What would be a good reference point for the car in the picture?

Describing Distance

- When describing distance, a scientist must include units.
- For example, when we measure something small, such as a pen, we use inches, cm, or mm .
- REVIEW: Scientists have standardized measurements in the scientific world. We use the International System of Units (SI Units).

The basic SI unit for length is meter.

Describing Distance

- A meter is a little bit longer than a yard.

- This is where our SI conversions are really going to start coming in handy.

- Short distances, such as the length of your desk, are measured in centimeters.

The diameter of a ring might be measured in millimeters.

Calculating Speed

- Speed depends on two things:

1. The distance the object moves.
2. How long it takes for the object to move.

Definition: Speed (s or c) - the distance an object travels in one unit of time

> Think of speed as how fast an object is moving.

This is a type of rate.

Calculating Speed

- To calculate the speed of an object, divide the distance it has traveled in the amount of time it traveled in.

$$
s=\frac{d}{t}
$$

- The SI units for speed are meters per second (m/s).

If this runner is moving
7 meters in 2 seconds,
she is moving at a speed of $3.5 \mathrm{~m} / \mathrm{s}$.

Constant Speed

- If the speed of an object does not change, it is said to have constant speed.

0. If the object has constant speed, and you know how far it went, you can calculate how long it took.

Constant Speed Practice Problems (p. 1 in packet)

$$
s=\frac{d}{t}
$$

- If Jenny is moving with a constant speed of $21 \mathrm{~m} / \mathrm{s}$, how long did it take her to travel ' $\bar{\circ} . \Sigma$ méers?

$$
\begin{aligned}
& \mathrm{s}=21 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~d}=
\end{aligned}
$$

$$
21 \mathrm{~m} / \mathrm{s}=-
$$

$$
\mathrm{t}=0.83 \text { seconds }
$$

- If John is moving with a constant speed of 2 mi/hr, how far was he able to walk in 1.75 hours?

$$
\begin{aligned}
& \mathrm{s}=2 \mathrm{mi} / \mathrm{hr} \\
& \mathrm{t}=1.75 \mathrm{hr}
\end{aligned}
$$

$$
2 \mathrm{mi} / \mathrm{hr}=\frac{}{1.75 \mathrm{hr}}
$$

$$
d=
$$

Constant Speed Practice Problem (p. 1 in packet)

$$
s=\frac{d}{t}
$$

- If Jonah traveled at $30 \mathrm{~km} / \mathrm{hr}$ for 0.5 hours and at $21.3 \mathrm{~km} / \mathrm{hr}$ for 1.2 hours, how far did he travel?

$$
\begin{aligned}
& \mathrm{s}=30 \mathrm{~km} / \mathrm{hr} \\
& \mathrm{t}=0.5 \mathrm{hr} \\
& 30 \mathrm{~km} / \mathrm{hr}=\frac{0.5 \mathrm{hr}}{0} \\
& (30 \mathrm{~km} / \mathrm{hr})(0.5 \mathrm{hr})= \\
& =\mathrm{d} \\
& s=21.3 \mathrm{~km} / \mathrm{hr} \\
& \mathrm{t}=1.2 \mathrm{hr} \\
& 21.3 \mathrm{~km} / \mathrm{hr}=\frac{1.2 \mathrm{hr}}{1 .} \\
& (21.3 \mathrm{~km} / \mathrm{hr})(1.2 \mathrm{hr})= \\
& =\mathrm{d} \\
& +\quad=\mathrm{d} \\
& 40.56 \mathrm{~km}=\mathrm{d}_{\text {total }}
\end{aligned}
$$

Average Speed

- Most objects do not move at constant speed.

- If an object does not have a constant speed, the average speed can be determined.
- ${ }^{5}$ This is done by dividing the total distance by the total time.

$$
\mathrm{s}_{\text {average }}=\frac{\mathrm{d}_{\text {total }}}{\mathrm{t}_{\text {total }}}
$$

Average Speed Practice Problem (p. 2 in packet)

- If Jonah traveled 15 miles during his first half hour of travel, and 25.56 miles during 1.2 hours of travel, what is his average speed?

$$
\begin{gathered}
+\quad=d_{\text {total }} \quad 0.5 \text { hours }+1.2 \text { hours }=t_{\text {total }} \\
40.56 \text { miles }=d_{\text {total }} \\
\quad 1.7 \text { hours }=t_{\text {total }} \\
S_{\text {average }}=\frac{40.56 \text { miles }}{1.7 \text { hours }} \\
\text { Saverage }=23.86 \mathrm{mi} / \mathrm{hr}
\end{gathered}
$$

Average Speed Practice Problems (p. 2 in packet)

- If Dorothea walked 1.5 miles during her first half hour of travel, and 4.2 miles during 1.25 hours of travel, what is her average speed?

```
Saverage }=3.25\textrm{mi}/\textrm{hr
```

- If Henry traveled 34.51 miles during his first forty-five minutes of travel, and 113.5 miles during 1.8 hours of travel, what is his average speed?

$$
S_{\text {average }}=58.04 \mathrm{mi} / \mathrm{hr}
$$

Describing Velocity

- The speed of an object does not tell you the direction of the object's motion.
- When you know both the speed and direction of an object's motion, you know the velocity of the object.
- Definition: Velocity (v) - Speed in a given direction.
- When velocity is reported, the direction must be included.

Velocity is typically reported rather than speed as both speed and direction are important pieces of information to have.

Active Demonstration

- Let the races begin!

- We will be going outside to judge speed and velocity.
- Materials Needed: 2 ropes, 2 blindfolds, 1 timer, 1 tape measure.
- Everyone must run at least one race.

Which was more challenging: when you were able to determine your direction or not?

Graphing Motion

- You can show the motion of an object on a line graph in which you plot distance against time.

- Time will be on the x-axis and distance will be on the y-axis.

A point on the graph (x, y) will represent the location of an object at a given time.

Graphing Motion

- Definition: Slope (m) - the steepness, or slant, of a line on a graph.

Speed Graph

A has a larger slope than B because it is a steeper line.

- The slope of the line of the graph will tell you how fast one variable changes in relation to the other.

Therefore, we can use the slope of the line of a graph depicting motion to determine the speed of the object.

Graphing Motion

- Let's read the Exploring: Motion Graphs on page 290.
- The first graph shows that the jogger traveled 170 m each minute. Therefore, the average speed between any two points is $170 \mathrm{~m} / \mathrm{min}$.
- Copy the graph and extend the line.

Exploring: Motion Graphs (p. 2 in packet)

- On the second graph, what happened during the sixth through eighth minutes?

The jogger stopped.

- What effect did the stop have on the jogger's average speed?

Average speed was lowered. New Avg. Spd.: 119m/min

- What was the difference in the jogger's average speed between the first and the second day?
$51 \mathrm{~m} / \mathrm{min}$.
- Let's look at the third graph. Compare the slope of the third to the first.

The slope of the first graph is greater.
How fast would the jogger be running if the graph was flat? $0 \mathrm{~m} / \mathrm{min}$.

Calculating Slope

- The slope of a line is its rise divided by its run. $m=\frac{\text { rise }}{\text { run }}$
- Therefore, in order to calculate the slope of a line, two points on the line must be known.
- Typically, it is preferred that these points not be directly beside one another. This is to ensure that the slope is more accurate.

The rise is the vertical distance between the two points. The run is the horizontal distance between the two points.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Calculating Slope

- Let's calculate the slope of the following line.

- We can choose the points $(2$,$) and (9$,$) to calculate the$ slope.

Calculating Slope $m=\frac{\text { rise }}{\text { run }}$
[Points (2,) and (9,)]
NOTE: We subtracted the first from the second in both cases. It does not matter which order you do it in, so long as it is the same both times.

- Remember that the rise is the vertical difference. Therefore, we must subtract the y values.
- =
- The run is the horizontal difference. Therefore, we must subtract the x values.

$$
9 s-2 s=7 s
$$

- We then can divide the rise by the run in order to determine slope.

$$
\mathrm{m}=\frac{}{7 \mathrm{~s}}=2 \mathrm{~m} / \mathrm{s}
$$

- Using the other equation, these steps can be done all at once.

$$
\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}
$$

$$
m=\frac{-}{9-2}=\frac{}{7 \mathrm{~s}}=2 \mathrm{~m} / \mathrm{s}
$$

Slope Practice Problem
 (p. 3 in packet)

- Determine the slope of the speed graph below.

$$
\mathrm{m}=6 \mathrm{~m} / \mathrm{s}
$$

Speed Graph

Line Equations

- Once we have the slope, we can use it to determine the equation of the line.
- The equation of a line is $y=m x+b$ where m is the slope and b is the y-intercept.
- In this case, and in the case of all speed graphs, you haven't moved before you start counting time.
- Therefore, the y-intercept is typically $(0,0)$, making the equation for speed graph lines $y=m x$.

The equation of our line, therefore, is $y=2 x$

Line Equation Practice Problem (p. 3 of packet)

- Determine the equation of the line in the graph below.

Speed Graph

Different Slopes

- Note that when an object in motion changes its speed, the slope of the line of the graph representing it changes.
- Let's look at Figure 8 on page 293.
- Each different slope can be seen as a different segment of the same graph, and would have to be calculated separately.
- A horizontal line represents an object that is not in motion, since there is no change in distance.

Section 2
 Slow Motion on Planet Earth

- Let's have a look at a world map.

- Notice how the land masses look like a giant puzzle.

What are Earth's Plates?

- The upper layer of Earth consists of more than a dozen major pieces called plates.

- According to scientists explanations, known as the theory of plate tectonics, Earth's plates move ever so slowly in various directions.

- Some plates will pull away from one another while other plates will come together.

How Fast Do Plates Move?

- Some small plates move as fast as several centimeters per year, while others move only a couple of millimeters per year.
- Let's look at Figure 10 on page 298.

Knowing how fast the plates are moving will allow for scientists to make predictions on what the earth will look like after a set period of time.

Calculating Distance Practice Problem (p. 4 in packet)

- Suppose a plate moves 5 centimeters over the course of a year. It can be said to have a speed of $5 \mathrm{c} \mathrm{m} / \mathrm{y}$ r.
- Try using this speed to determine how far the plate will have moved in 1000 years.

$$
\begin{array}{ll}
\mathrm{s}=5 \mathrm{~cm} / \mathrm{yr} \\
\mathrm{t}=1000 \mathrm{yr} & 5 \mathrm{~cm} / \mathrm{yr}=\frac{1000 \mathrm{yr}}{\mathrm{t}} \\
\mathrm{~s}=\frac{-}{\mathrm{t}} & (5 \mathrm{~cm} / \mathrm{yr})(1000 \mathrm{yr})= \\
& \mathrm{d}=
\end{array}
$$

Sharpen Your Skills (pg 297) (p. 4 in packet)

- LA is on the Pacific plate moving NW. San
 Francisco is on the North American plate moving SE.
- These cities are moving toward each other at $5 \mathrm{~cm} / \mathrm{yr}$. If the cities are $554,000 \mathrm{~m}$ apart, how long will it take for them to reach each other?
- Use the map to the left to locate LA and San Francisco. Where do you think the plate runs?

Demonstration

- Measure the length of your step (back toes to front heel) in inches.

Convert this distance to cm . Recall that $1 \mathrm{in}=2.54 \mathrm{~cm}$.

- Imagine that you walk 10000 steps in one day on average.
- What is your average speed? Convert this to $\mathrm{cm} / \mathrm{yr}$ and compare to the average speed of a fast plate.

Section 3

Acceleration

- It is rare for any motion to stay the same for a long time.
- Changes in motion can be described in much the same way that speed and velocity have been described.
- Example - A car, which has been stopped at a red light, gets a green light and begins to move. If the car is in a $35 \mathrm{mi} / \mathrm{hr}$ zone, when the gas pedal is pushed, does the car instantly go at $35 \mathrm{mi} / \mathrm{hr}$?

Acceleration in Science

- The answer to this question is no. The car must accelerate first.
- In everyday language, acceleration means "speeding up."
- 5 In science, acceleration has a slightly more specific definition.

Definition: Acceleration (α) - the rate at which velocity changes.

Acceleration

- Remember, velocity has two components: both speed and direction.
- In science, acceleration refers to increasing speed, decreasing speed, or changing direction.

Brief demonstration. Materials - ball on string. How is the ball accelerating?

Increasing Speed

- At any time the speed of an object increases, it is accelerating.
- Examples include:

1. Throwing a ball
2. Launching a rocket
3. Speeding up a car

People can experience this kind of acceleration as well. When we start running or skating, we accelerate up to the speed we want to be going.

Decreasing Speed

- Decreasing speed is another form of acceleration.
- This process is often referred to as deceleration.
- Examples include:

1. Stopping a car
2. A runner slowing to a walk
3. A ball being caught

- True or False:
- When you step on the gas while driving, you are accelerating.
- When you step on the brake, you are accelerating.

Changing Direction

- Acceleration can occur even when speed is constant.
- This happens if the object changes direction.
- Examples include:

Changing Direction

- Many objects are constantly changing direction without changing speed.
- The simplest form of this kind of acceleration is known as circular motion.
- Examples include:

Demonstration: Proving that circular motion has a change in direction. Materials: CD, Arrow, Tape, Marker

Velocity and Acceleration

Calculating Acceleration

- To determine the acceleration of an object, you must calculate the change in velocity during each unit of time.
- This can be summarized in the following equation:

$$
\alpha=\frac{v_{f}-v_{i}}{t}
$$

- If velocity is measured in m / s and time is measured in s , then what is acceleration measured in?

$$
\mathrm{m} / \mathrm{s} / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}
$$

- If the object's speed changes by the same amount during each unit of time, the acceleration is the same.
- If the acceleration varies, the average acceleration can be described.

Calculating Acceleration Practice Problem (p. 5 in packet)

- A car advertisement states that a certain car can accelerate from rest to $90 \mathrm{~km} / \mathrm{hr}$ in Θ seconcls. Find the car's acceleration in mi/hr ${ }^{2}$.

$$
\begin{aligned}
& v_{f}=90 \mathrm{~km} / \mathrm{hr} \\
& v_{\mathrm{i}}=0 \mathrm{~km} / \mathrm{hr} \\
& \mathrm{t}=9 \mathrm{~s}=0.0025 \mathrm{hr}
\end{aligned}
$$

$$
9 \mathrm{~s} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=0.0025 \mathrm{hr}
$$

$$
\alpha=90 \mathrm{~km} / \mathrm{hr}-0 \mathrm{~km} / \mathrm{hr}
$$

0.0025hr

$$
=36000 \mathrm{~km} / \mathrm{hr}^{2}
$$

Graphing Acceleration

- If one graphs speed versus time for constant acceleration, the line will be linear.
- If one graphs distance versus time for constant acceleration, the graph will be nonlinear.

Chapter 9 Review

Answer questions
1-10, 12, 13, 15, 18-19
On pages 308-309

Frank, D. V., Little, J. G., Miller, S., Pasachoff, J. M., \& Wainwright, C. L. (2001). Physical science. Needham, Mass.: Prentice Hall.

