Physical Science Study Guide

Unit 3 Test - Monday, March 12

Key Terms:

o Force System Schema Gravity o Unbalanced Force Tension Net Force Contact Force o Balanced Forces Sliding Friction Static Friction o Fluid Friction o Rolling Friction o Elastic Force Newton o Flex Force (Normal Force) o Inertia Weight o Mass o Force Addition Diagram Newton's Second Law Newton's Third Law of Newton's First Law of Motion Motion of Motion

Test Material by Subject:

Forces

- Types
 - o Be able to recognize the different types of forces acting on an object
 - Tension (F_T)
 - Sliding Friction (F_{fk})
 - Fluid Friction (F_{fk})
 - Rolling Friction (F_{fk})
 - Static Friction (F_{fs})
 - Gravitational Field Force (Fg)
 - Know acceleration due to gravity
 - Understand the difference between weight and mass and how each may change
 - Flex Force a.k.a. Normal Force (F_N)
 - Elastic Force (F_e)
 - Contact Force (F_{contact})
 - o Recall that forces are indicated using arrows that indicate the size and direction of the force
 - o Be able to draw a force diagram for an object given its circumstances
 - o Be able to draw a system schema and/or force addition diagram for an object
 - o Be able to write a sentence about an object's motion in terms of acceleration and force.
 - Recall that the unit for Force is Newtons (kgm/s²)
- Net Forces
 - Be able to add all of the forces acting on an object to get the net force
 - Recall that forces acting in opposite directions subtract from each other. The resulting force is in the direction of the larger one. For example: 30N to the right and 20N to the left combine to a 10N force to the right.
- Balanced vs. Unbalanced Forces
 - Balanced Forces
 - Net force = 0; no acceleration
 - Understand that forces of equal size in opposite direction acting on a single object cancel each other out.
 - Remember that if an object is in constant motion (or at rest), then the net force is zero. Be able to apply this mathematically. For example: If a box is moving at a constant velocity and Jenny is applying 5N of force, then there are 5N of friction to balance it out.
 - o Unbalanced Forces
 - Net force ≠ 0; there is acceleration

Physical Science Study Guide Unit 3 Test – Monday, March 12

- There may be forces in opposite directions, but they are not equal in size. In a force diagram, one arrow will be larger than its opposite.
- This is how motion occurs

Newton's First Law of Motion

- Definition
 - Understand that objects resist changes to motion (they have inertia)
 - o If an object is in motion, it will stay in motion indefinitely until an unbalanced force changes its motion
- Applications (these are examples be able to apply the concepts to any object in motion or at rest)
 - To start the ball in broom ball, you had to apply a force in the direction you wanted the ball to move.
 - o In the no-touch zone, you did not have to touch the ball at all for it to continue its motion.
 - To stop the ball in broom ball, you had to apply a force in the opposite direction of its motion.

Newton's Second Law of Motion

- Definition
 - The net force on an object is equal to the object's mass times its acceleration (F = ma)
 - This applies to more than just gravity! Therefore, the acceleration will not always be 9.8m/s² (unless we are talking about gravitational pull on Earth).
- Applications
 - o Be able to calculate acceleration, force, or mass given the other two parts.
 - Be able to provide the appropriate units for a calculated quantity.
 - \circ Example problem: What is the net force acting on a 15kg object with an acceleration of 10m/s^2 ?

$$F = ma$$

$$F = (15kg) \left(10 \frac{m}{s^2}\right)$$

$$F = 150N$$

Newton's Third Law of Motion

- Definition
 - o For any force applied to an object, there is an equal and opposite reaction force.
 - Understand that the reaction force is not usually applied to the same object as the original force.
 - The FORCES are always equal and opposite, even if the masses and accelerations are not.
- Applications
 - o This law is applicable to any force applied to an object
 - o Collisions are an excellent example of this law.
 - Understand that differences in mass and acceleration will cause the same force to have a different effect on two objects.

See "Essential Questions/Instructional Goals" File for the Unit on my website & Reference table for equations.