Physical Science
 Study Guide
 Unit 3 Test - Monday, March 12

Key Terms:

Force	- System Schema	- Gravity	Unbalanced Force
Tension	Net Force	- Contact Force	Balanced Forces
- Sliding Friction	- Static Friction	- Fluid Friction	Rolling Friction
- Elastic Force	- Newton	- Flex Force (Normal Force)	
- Inertia	- Weight	- Mass	Force Addition Diagram
- Newton's First Law of Motion	- Newton's Second Law of Motion	- Newton's Third Law of Motion	

Test Material by Subject:

Forces

- Types
- Be able to recognize the different types of forces acting on an object
- Tension (F_{T})
- Sliding Friction (F_{fk})
- Fluid Friction (F_{fk})
- Rolling Friction (F_{fk})
- Static Friction (F_{fs})
- Gravitational Field Force (Fg_{g})
- Know acceleration due to gravity
- Understand the difference between weight and mass and how each may change
- Flex Force a.k.a. Normal Force (F_{N})
- Elastic Force (F_{e})
- Contact Force ($\mathrm{F}_{\text {contact }}$)
- Recall that forces are indicated using arrows that indicate the size and direction of the force
- Be able to draw a force diagram for an object given its circumstances
- Be able to draw a system schema and/or force addition diagram for an object
- Be able to write a sentence about an object's motion in terms of acceleration and force.
- Recall that the unit for Force is Newtons (kgm/s²)
- Net Forces
- Be able to add all of the forces acting on an object to get the net force
- Recall that forces acting in opposite directions subtract from each other. The resulting force is in the direction of the larger one. For example: 30N to the right and 20N to the left combine to a 10 N force to the right.
- Balanced vs. Unbalanced Forces
- Balanced Forces
- Net force = 0; no acceleration
- Understand that forces of equal size in opposite direction acting on a single object cancel each other out.
- Remember that if an object is in constant motion (or at rest), then the net force is zero. Be able to apply this mathematically. For example: If a box is moving at a constant velocity and Jenny is applying 5 N of force, then there are 5 N of friction to balance it out.
- Unbalanced Forces
- Net force $\neq 0$; there is acceleration

Physical Science
 Study Guide
 Unit 3 Test - Monday, March 12

- There may be forces in opposite directions, but they are not equal in size. In a force diagram, one arrow will be larger than its opposite.
- This is how motion occurs

Newton's First Law of Motion

- Definition
- Understand that objects resist changes to motion (they have inertia)
- If an object is in motion, it will stay in motion indefinitely until an unbalanced force changes its motion
- Applications (these are examples - be able to apply the concepts to any object in motion or at rest)
- To start the ball in broom ball, you had to apply a force in the direction you wanted the ball to move.
- In the no-touch zone, you did not have to touch the ball at all for it to continue its motion.
- To stop the ball in broom ball, you had to apply a force in the opposite direction of its motion.

Newton's Second Law of Motion

- Definition
- The net force on an object is equal to the object's mass times its acceleration ($\mathrm{F}=\mathrm{ma}$)
- This applies to more than just gravity! Therefore, the acceleration will not always be $9.8 \mathrm{~m} / \mathrm{s}^{2}$ (unless we are talking about gravitational pull on Earth).
- Applications
- Be able to calculate acceleration, force, or mass given the other two parts.
- Be able to provide the appropriate units for a calculated quantity.
- Example problem: What is the net force acting on a 15 kg object with an acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$?

$$
\begin{gathered}
F=m a \\
F=(15 \mathrm{~kg})\left(10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
F=150 \mathrm{~N}
\end{gathered}
$$

Newton's Third Law of Motion

- Definition
- For any force applied to an object, there is an equal and opposite reaction force.
- Understand that the reaction force is not usually applied to the same object as the original force.
- The FORCES are always equal and opposite, even if the masses and accelerations are not.
- Applications
- This law is applicable to any force applied to an object
- Collisions are an excellent example of this law.
- Understand that differences in mass and acceleration will cause the same force to have a different effect on two objects.

See "Essential Questions/Instructional Goals" File for the Unit on my website \& Reference table for equations.

