Physical Science Study Guide Unit 4 Test – Friday, March 18

Key Terms:

- Energy
- Chemical Energy
- Energy Conversion
- Fossil Fuels
- Elastic Potential Energy
- Nuclear Energy • Power

• Electrical Energy

• Kinetic Energy

Energy

- Potential Energy
- Mechanical Energy
- Photosynthesis
- o Watt
- Gravitational Potential Law of Conservation of Electromagnetic Energy Energy
- o Ioule
- Thermal Energy
- o Turbine
- Horsepower

Test Material by Subject:

The Nature of Energy

- Understand what energy is
- 2 Kinds: •
 - Kinetic
 - Understand that kinetic energy is dependent on mass and velocity (more on velocity than mass)
 - Given a mass and a velocity, be able to calculate the kinetic energy. .

Example: A ball has a mass of 5kg and is moving at 15m/s. What is		
the ball's kinetic energy?		
m = 5kg	$1 (15m)^2$	
v = 15m/s	$E_K = \frac{1}{2} (5kg) \left(\frac{15m}{s}\right)^2$	
$E_K = \frac{1}{2}mv^2$	$E_K = \frac{1}{2}(5kg) 225 \frac{m^2}{s^2}$	
$L_{K}^{L} = 2^{mv}$	$E_K = \frac{1}{2}(5Kg) 225 \frac{1}{s^2}$	
	$E_K = 562.5 J$	

• Potential

- Elastic potential energy
 - Be able to give examples of objects with elastic potential energy ٠
 - Understand the difference between elastic potential energy and kinetic energy
- Gravitational potential energy
 - Understand that gravitational potential energy is dependent on mass (or weight) and height.
 - Be able to calculate the gravitational potential energy given an object's weight or mass and its height.

Example: Batman is standing on the edge of a building that is 250m		
tall. If he has a mass of 65kg, what is his gravitational potential		
energy?		
m = 65kg	$E_P = (65kg) \left(\frac{9.8m}{s^2}\right) (250m)$	
$a = 9.8 m/s^2$	$E_P = (65 kg) \left(\frac{1}{s^2} \right) (250m)$	
$E_P = mgh$	$E_P = 159250 J$	

- There are 6 types of energy; be able to recognize examples of each. •
 - Mechanical
 - Chemical
 - Thermal
 - o Nuclear
 - Electric
 - Electromagnetic

Physical Science Study Guide Unit 4 Test – Friday, March 18

Energy Conversion and Conservation

- Be able to discuss how running water can be used to convert energy
- Understand that one type of energy can be converted into most other forms of energy
- Know why input work is less than output work for any machine (why it is not 100% efficient)
- Be able to discuss the energy conversions in a pole vaulting, a pendulum, juggling, and/or a waterfall.
- Understand the law of conservation of energy. Be able to discuss it and Einstein's revision of the law.
- Understand that kinetic energy is converted into potential energy and vice versa. Be able to use this fact to calculate the amount of one kind of energy from the other.

Example: A sky	vdiver has a mass of 50kg and jumps from a plane at	
3810m. What is his kinetic energy at 2000m?		
m = 50kg	$E_P = (50kg) \left(\frac{9.8m}{s^2}\right) (3810m)$	
$a = 9.8 m/s^2$	$E_P = (50 kg) \left(\frac{1}{s^2} \right) (3810m)$	
h ₁ = 3810m	$E_P = 1866900 J$	
$h_2 = 2000m$		
$E_P = mgh$	$E_P = (50kg) \left(\frac{9.8m}{s^2}\right) (2000m)$	
	$E_P = (50 \text{ kg}) \left(\frac{1}{s^2} \right) (2000 \text{ m})$	
	$E_P = 980000J$	
	$E_K = 1866900J - 980000$	
	$E_{K} = 886900J$	
	• • •	

• Understand the difference between conserving energy and the law of conservation of energy.

Energy Conversions and Fossil Fuels

- Know where fossil fuels come from.
- Be able to describe the process of photosynthesis.
- Be able to describe the energy conversions and conditions required for creating coal (starting with the energy conversions in the sun).
- Understand what we use fossil fuels for and how their energy is converted. Be able to describe this process.
- Understand what a turbine is and how it is used.

Power

- Understand the difference between energy and power.
- Given time and work or force and distance, be able to calculate power.

Example: If 15	Example: If 150J of work are done on an object in 10 seconds, what		
is the power used to do the work?			
W = 150J	150 <i>J</i>		
W = 150J t = 10s	$P = \frac{10s}{10s}$		
D W			
$P = \frac{1}{t}$	P = 15watts		

- Understand what horsepower is.
- Know how many watts are in 1 horsepower. Be able to convert between these units.

Example: How	many watts are in 350hp?
hp = 360hp 1hp = 746w	$360hp * \frac{746watts}{hr} = 268560watts$
111p = 740w	' hp