

- Objective:
 - I will be able to read chemical equations. I will understand how the law of conservation of mass applies to chemical reactions.

• Vocabulary:

Law of Conservation of Mass	Chemical Reaction	Reactant	Product	Activation Energy
Catalyst	Chemical Equation	Inhibitor		
	· ·	1	1	

- Reactions
 - Chemical changes in which bonds are broken and new bonds are created.
 - Chemical reactions required a certain amount of energy to begin, called activation energy.

- If heat is released (reaction feels warmer), reaction is exothermic. If heat is absorbed (reaction feels colder), reaction is endothermic.
- A chemical equation is a shorter, easier way to show chemical reactions using symbols instead of words.

3.1 Law of Conservation of Mass

- Parts of a Chemical Equation
 - · Reactants are the materials you have at the start of a reaction
 - · Products are the materials at the end of a reaction
 - Coefficients are numbers listed before a chemical formula in a chemical equation to indicate the ratio of compounds reacting.

Reactant + Reactant → Product + Product

- Factors that Affect Reaction Speeds
 - Concentration
 - Increasing the concentration of a reactant can increase the speed of the reaction
 - · Increases the number of particles available to react
 - Temperature

- Increasing temperature affects the speed of a reaction.
- Particles are moving faster, so they come into contact more often, and there is more energy available (quicker to meet activation energy)

3.1 Law of Conservation of Mass

- Surface Area
 - · Increasing surface area increases reaction speed
 - More particles are available to react at the same time.

• Ex: chewing food to make it easier for enzymes in our saliva

- Catalysts/Inhibitors
 - Catalysts
 - Speed up a reaction by making the reaction require less activation energy
 - · Life not possible without enzymes, biological catalysts
 - Inhibitors
 - · Slow down or stop reactions by increasing the required activation energy
 - May bond with a reactant to prevent the other chemical from doing so

3.1 Law of Conservation of Mass

- Law of Conservation of Mass
 - The amount of matter involved in a chemical reaction does not change. The total mass of the reactants must equal the total mass of the products.
 - Mass is neither created nor destroyed in chemical reactions.
 - If your reaction beaker seems to have less mass after a chemical reaction, it is most likely that at least one of your products was a gas that escaped.

3.2 Balancing Chemical Equations						
 Objective: I will be able the law of control 	to use coefficier	nts to balance c ass.	hemical equa	tions so that	they follow	
Vocabulary:						
Coefficients	Subscript					

3.2 Balancing Chemical Equations						
.	C ₂ H ₄ O ₂ Symbols					
Coefficients vs. Subscripts	Subscripts					
 Subscripts show the ratio of elements in a compound. Since each compound has a specific ratio of elements, THESE DO NOT CHANGE!!! 						
 Coefficients show the ratio of one compound to another 	er in a reaction.					
 In order to abide by the law of conservation of mass, the coefficients in a chemical reaction can be changed so that the same number of atoms of each element is present on both sides of the reaction. 						
 Multiply a coefficient by a subscript to determine the number of atoms of an element. 						
 If no coefficient is listed, it is an assumed 1. 						

3.2 Balancing Chemical Equations

- Rules for Balancing Chemical Equations
 - Take note of the elements present on each side of the equation (keep polyatomic ions together if they appear on both sides).
 - Count the number of atoms of each element present on each side of the equation.
 - Balance one element/polyatomic ion at a time.
 - If you have a lone element as a reactant or product, save it for last.
 - If your reaction contains only H, C, and O, balance them in that order.
 - In the end, you want the number of each type of atom/ion the same on both sides of the equation.
 - The coefficients should be in the simplest whole-number ratio.

3.2 Balancing Chemical Equations

Practice			Reactants	Products
	2 H ₂ + 1 O ₂ \rightarrow 2 H ₂ O	Н	2 4	2 4
• $H_2 + O_2 \rightarrow H_2O$	2 * 2 * 2 *	0	2	<u> </u>
• $C + Cl_2 \rightarrow CCl_4$				
			Reactants	Products
• $Al_2O_3 \rightarrow Al + O_2$	$1 C + 2 Cl_{a} \rightarrow 1 CCl_{a}$	С	1	1
		CI	2 4	4
			Reactants	Products
	² Al ₂ O ₂ \rightarrow ⁴ Al + ³ O ₂	AI	2 4	1 4
		0	3 6	2 6

3.3 Reacti	on Types			
Objective: • I will be at	ble to identify the t	type of reactior	n occurring give	n a chemical equatior
Vocabulary:				
Synthesis	Decomposition	Single Replacement	Double Replacement	Combustion

3.3 Reaction Types

Decomposition

 $AX \rightarrow A+X$

- Properties of Reaction Type
 - A compound breaks down into two or more new products.
 - The products may be elements, compounds, or some of each.
- Examples
 - $2H_2O_2 \rightarrow 2H_2O + O_2$
 - $CaCO_3 \rightarrow CaO + CO_2$

3.3 Reaction Types

- Double Replacement
 - Properties of Reaction Type

 $AX + BY \rightarrow AY + BX$

- Two compounds react together and swap anions.
- Be careful not to accidentally carry over subscripts (but keep polyatomic ions together). Balance your equation with coefficients afterwards.
- Examples
 - $CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2CO_3$
 - $2NaCl + Ca(OH)_2 \rightarrow 2NaOH + CaCl_2$

3.3 Reaction Types

- Combustion
 - Properties of Reaction Type
 - This type of combustion reacts a hydrocarbon with oxygen to produce carbon dioxide, water, and heat.
 - There are other elements capable of combusting. However, we will not be investigating those.
 - Examples
 - $C_3H_8+5O_2\rightarrow 3CO_2+4H_2O$
 - $2C_2H_4O+5O_2\rightarrow 4CO_2+4H_2O$

 $C_xH_yO_z + O_2 \rightarrow H_2O + CO_2$

- Objective:
 - I will understand the difference between acids and bases. I will recognize an acid or base using pH. I will be able to recognize neutralization reactions and predict their products.
- Vocabulary:

Acid	Base	pН	pH Scale	Indicator
Hydrogen Ion	Hydroxide Ion	Neutralization	Salt	

- Litmus is an indicator that changes color when it comes into contact with an acid or base.
- Strong acids easily produce hydrogen in solution, while weak acids have a harder time of it.
- Seven strong acids (HCI, H₂SO₄, HNO₃, HBr, HCIO₃, HI, HCIO₄)
- Uses
 - Etching metals
 - · Testing if a rock is made of limestone

- Strong bases produce more hydroxide ion than weak bases
- Examples of strong bases include: NaOH, KOH, LiOH
- Ammonia (NH₃) is a weak base
- Uses
 - Soap & Shampoo
 - Cleaning Supplies
 - Antacids

Most basi

3.4 Acids & Bases

- pH
 - The pH scale is a range of values from 0 to 14 that expresses the concentration of hydrogen ions in a solution.
 - The higher the concentration of hydrogen, the lower the pH.

The pH Scale

Water Raking sod

- Acids have pH values below 7
- Bases have pH values above 7
- A pH value of 7 means that the solution is neutral (neither acidic nor basic)

- Neutralization Reactions
 - · A reaction between an acid and a base
 - Usually, though not always, results in a neutral pH. Final pH depends on reactant:
 - Volumes
 - Concentrations
 - Identities
 - · Products are a salt and water
 - Salt is any ionic compound that can be made from the neutralization of an acid with a base.

HCI + NaOH → NaCI + H_2O

• Cation from base, anion from acid

3.5 Radioactive Decay

- Objective:
 - I will be able to compare and contrast the three types of radioactive decay, and know how each is used.
- Vocabulary:

Radioactive Decay	Radioisotopes/ radionuclides	Alpha Decay	Alpha Particle	Beta Decay
Beta Particle	Gamma Decay	Gamma Ray		

Alpha Particle

Daughter Nucleus

Parent Nucleus

3.5 Radioactive Decay

- Radioactive Isotopes
 - Radioactive Decay Unstable isotopes become stable by releasing different types of particles
 - · The elements which undergo this process are called radioisotopes/radionuclides
- Types of Radioactive Decay
 - Alpha Decay
 - Radioactive decay in which a radionuclide gives off an alpha particle

An alpha particle

- Symbols: 4_2He and ${}^4_2\alpha$
- · is a helium nucleus with two protons and two neutrons
- · Can be stopped with a piece of paper (cannot penetrate most matter)
- Dangerous if inhaled or ingested.
- · Most alpha emitters occur naturally in the environment
- Uses of Alpha Emitters:
 - · Ra-226 used to treat cancer
 - · Po-210 used as a static eliminator in paper mills
 - Am-241 used in smoke detectors; the alpha emissions used to create electrical current

3.5 Radioactive Decay

- Beta Decay
 - Radioactive decay in which the radionuclide changes a neutron into a proton and an electron
 - Beta Particle
 - Symbols: ${}_{-1}^{0}\beta$ and ${}_{-1}^{0}e$

- is a fast moving electron given off when the neutron is changed
- · Can be stopped by aluminum foil or plastic
- · Can travel several feet in open air

3.5 Radioactive Decay

- Uses of Beta Emitters:
 - I-131 used to treat thyroid disorders
 - · Sr-90 used as radioactive tracer in medical and agricultural studies
 - H-3 used in life science and drug metabolism studies
 - C-14 used in carbon-dating (up to 30,000 years old)

3.5 Radioactive Decay

- Gamma Decay
 - The emission of gamma rays after alpha or beta emission if the new atom still has too much energy.
 - Gamma Ray
 - High-energy radiation that has no electrical charge and no mass
 - Have 10,000 times more energy than visible light
 - · Released with alpha and beta particles
 - Can travel hundreds to thousands of meters in air before spending their energy

- · Can pass through human tissue and are dangerous
- Can be stopped by lead
- · Do not make materials radioactive
- Uses for Gamma Rays:
 - Co-60 used to sterilize medical equipment, pasteurize certain foods and spices, treat cancer, gauge thickness of metal in steel mills.
 - Ce-137 used to treat cancer; measure and control flow of liquids in industrial processes, investigate subterranean strata in oil wells, measure soil density at construction sites

3.6 Balancing Nuclear Reactions

- Objective:
 - I will be able to write equations for nuclear reactions. I will be able to predict the products and/or reactants of each type of decay.
- Vocabulary:

Nuclear Reaction	Daughter Isotope	Parent Isotope	Radioactive Isotope	

3.6 Balancing Nuclear Reactions						
• Practice • $^{222}_{86}Rn \rightarrow ^{A}_{Z}Y + ^{4}_{2}He$	$^{222}_{86}Rn \rightarrow ^{218}_{84}Po + ^{4}_{2}He$					
• $^{A}_{Z}X \rightarrow ^{230}_{90}Y + ^{4}_{2}He$	${}^{234}_{92}U \rightarrow {}^{230}_{90}Y + {}^{4}_{2}He$					
• $^{230}_{90}Th \rightarrow ^{A}_{Z}Y + ^{4}_{2}He$	$^{230}_{90}Th \rightarrow ^{226}_{88}Ra + {}^{4}_{2}He$					
• $^{A}_{Z}X \rightarrow ^{214}_{82}Pb + ^{4}_{2}He$	$^{218}_{84}Po \rightarrow ^{214}_{82}Pb + ^{4}_{2}He$					

3.6 Balancing Nuclear Reactions						
• Practice • $^{234}_{90}Th \rightarrow ^{A}_{Z}Y + ^{0}_{-1}\beta$	$^{234}_{90}Th \rightarrow ^{234}_{91}Pa + ^{0}_{-1}\beta$					
• $^{A}_{Z}X \rightarrow ^{210}_{82}Pb + ^{0}_{-1}\beta$	${}^{210}_{81}Tl \rightarrow {}^{210}_{82}Pb + {}^{0}_{-1}\beta$					
• $^{210}_{83}Bi \rightarrow ^{A}_{Z}Y + ^{0}_{-1}\beta$	${}^{210}_{83}Bi \rightarrow {}^{210}_{84}Po + {}^{0}_{-1}\beta$					
• $^{A}_{Z}X \rightarrow ^{214}_{83}Bi + ^{0}_{-1}\beta$	${}^{214}_{82}Pb \rightarrow {}^{214}_{83}Bi + {}^{0}_{-1}\beta$					

3.7 Nuclear Fusion and Nuclear Fission							
 Objective: I will underst be able to pr 	and the differen edict the produc	ice between nuc cts of nuclear fu	clear fusion and sion reactions.	nuclear fission. I will			
Vocabulary:							
Nuclear Fusion	Nuclear Fission	Chair Reaction	Critical Mass				

3.7 Nuclear Fusion and Nuclear Fission

- Nuclear Fission
 - · A very heavy nucleus splits into more-stable nuclei of intermediate mass
 - · Enormous amounts of energy are released
 - · Can occur spontaneously or when nuclei are bombarded by particles
 - Ex: ${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{141}_{56}Ba + {}^{92}_{36}Kr + {}^{3}_{0}n + Energy$

3.8 Half-Life				
 Objective: I will understa calculate half amount of time 	and half-life and -life and the am ne based upon h	some practical ount of a substa nalf-life.	applications of ance remaining	it. I will be able to after a certain
 Vocabulary: 				
Half-Life	Carbon Dating			

3.8 Half-Life

- Applications of half-Life
 - Calculating how much will be left for an experiment after being removed from a reactor
 - Carbon dating
 - Calculating how long we must store radioactive waste until they become safe
 - · Safe radioactive tracers in medicine

3.8 Half-Life

- Half-Life Calculations
 - Remaining amounts of an isotope can be calculated using the formula: $y = (0.5)^n x$
 - y = remaining amount; n = number of half-lives; x = original amount
 - Practice:
 - An isotope of cesium (cesium-137) has a half-life of 30 years. If 1.0 mg of cesium-137 disintegrates over a period of 90 years, how many mg of cesium-137 would remain?

$$\frac{90 \text{ yrs}}{30 \text{ yrs}} = 3$$

$$y = (0.3)^{\circ} (1.0)$$

$$y = 0.125 \text{ mg}$$

3.8 Half-Life

• Sodium-25 was to be used in an experiment, but it took 3.0 minutes to get the sodium from the reactor to the laboratory. If 5.0mg of sodium-25 was removed from the reactor, how many mg of sodium-25 were placed in the reaction vessel 3.0 minutes later if the half-life of sodium-25 is 60 seconds?

 $\frac{3.0\min}{1.0\min} = 3$ y = (0.5)³ (5.0) y = 0.625 mg