Unit 3: Polynomials and Factoring

3.1. Add/Subtract Polynomials (M2 11.1)
 - Review:

- Monomial - real number, variable, or product of number and variable
- Ex: $18 \quad 4 x^{5} \quad$ y $\quad a^{2} b c^{4}$
- Degree of a Monomial - sum of a monomial's variables' exponents
- constants have a degree of 0
- Zero has no degree
- Polynomial - a monomial or sum of monomials
- Ex: $3 x^{4} \quad 5 x^{2}-7 x \quad 2 a+3 b+4 c$
- Standard form of polynomial - ordered from greatest degree to least degree
- Degree of a polynomial - (in one variable) is the same as the degree of the monomial with the greatest exponent.
- Adding and Subtracting Monomials
- You can only combine like terms (same variables and degree) with addition and subtraction
- Add/subtract the coefficients; the variables and exponents remain the same.
- Examples:
- $3 x^{2}+5 x^{2}=8 x^{2}$
degree: 2
- $4 x^{3} y-x^{3} y=3 x^{3} y$
degree: 4
- $8 w^{2} x+w^{2} x=9 w^{2} x$
degree: 3
- $5 b c^{4}-13 b c^{4}=-8 b c^{4}$

$$
\text { degree: } 5
$$

- Classifying Polynomials
- A polynomial can be named based on its degree, or the number of monomials it contains.

Polynomial	Degree	Name Using Degree	Number of Terms	Name Using Number of Terms
6	0	Constant	1	monomial
$5 x+9$	1	liriear	2	binomial
$4 x^{2}+7 x+3$	2	quadratic	3	trinomial
$2 x^{3}$	3	cubic	1	monomial
$8 x^{4}-2 x^{3}+3 x$	4	Fourth degree	3	trinomial

- Adding Polynomials
- Add polynomials by combining like terms.
- Ex: A researcher studied the number of overnight stays in U.S. National Park Service campgrounds and in the backcountry of the national park system over a 5 -yr period. The researcher modeled the results, in thousands, with the following polynomials.

Campgrounds: $-7.1 x^{2}-180 x+5800$
Backcountry: $21 x^{2}-140 x+1900$
In each polynomial, $x=0$ corresponds to the first year in the $5-\mathrm{yr}$ period. What polynomial models the total number of overnight stays in both campgrounds and backcountry?

$$
\begin{array}{c:c}
\begin{array}{c}
\text { Method 1: } \\
-7.1 x^{2}-180 x+5800
\end{array} & \left(-7.1 x^{2}+21 x^{2}\right)+(-180 x-140 x)+(5800+1900) \\
+\left(21 x^{2}-140 x+1900\right) & =13.9 x^{2}-320 x+7700
\end{array}
$$

- Simplify $\left(5 x^{2}+3\right)+\left(15 x^{2}+2\right)$

$$
\begin{array}{r}
5 x^{2}+3 \\
+\left(15 x^{2}+2\right) \\
\hline 20 x^{2}+5
\end{array}
$$

- Subtracting Polynomials
- The opposite of addition
- Distribute the negative into the second polynomial then add the coefficients of like terms.
- Ex: Simplify $\left(x^{3}-3 x^{2}+5 x\right)-\left(7 x^{3}+5 x^{2}-12\right)$

Method 1: $x^{3}-3 x^{2}+5 x+0$

Method 2: $\left(x^{3}-3 x^{2}+5 x\right)-\left(7 x^{3}+5 x^{2}-12\right)$

$$
\left(x^{3}-7 x^{3}\right)+\left(-3 x^{2}-5 x^{2}\right)+5 x+12
$$

$$
-6 x^{3}-8 x^{2}+5 x+12
$$

- Ex: Simplify $\left(-6 w^{4}+w^{2}\right)-\left(-2 w^{3}+4 w^{2}-w\right)$
$-6 \omega^{4}+2 \omega^{2}+\left(\omega^{2}+4 \omega^{2}\right)+\omega$
$-6 w^{4}+2 w^{3}+5 w^{2}+w$

3.2. Multiply/Factoring Polynomials (M2 11.2)

- Multiply a Monomial and a Trinomial
- You can use the distributive property to multiply a monomial by a polynomial.
- Ex: $2 x(3 x+1)$

$$
\begin{aligned}
& =2 x(3 x)+2 x(1) \\
& =6 x^{2}+2 x
\end{aligned}
$$

- Ex: $-x^{3}\left(9 x^{4}-2 x^{3}+7\right)$

$$
\begin{aligned}
& =-x^{3}\left(9 x^{4}\right)-x^{3}\left(-2 x^{3}\right)-x^{3}(7) \\
& =-9 x^{7}+2 x^{6}-7 x^{3}
\end{aligned}
$$

- Finding the Greatest Common Factor
- Factoring reverses the multiplication process.
- When factoring a monomial from a polynomial, the first step is to find the greatest common factor (GCF) of the polynomial's terms.
- Ex: What is the GCF of the terms of $5 x^{3}+25 x^{2}+45 x$?

- Ex: Find the GCF of the terms of the polynomial $45 b+27$.

- Factoring Out a Monomial
- Once you find the GCF of a polynomial's terms, you can factor it out of the polynomial.
- Ex: What is the factored form of $4 x^{5}-24 x^{3}+8 x$?

$$
\begin{aligned}
& \left.\begin{array}{rl}
4 x^{5}: \\
-24 x^{3}:-1 & 2 \\
8 x: 2 & 2 \\
2
\end{array}\right) \cdot(2 \cdot 3 \cdot x \cdot x \cdot x \cdot 4 x \\
& =4 x\left(x^{4}\right)+4 x\left(-6 x^{2}\right)+4 x(2) \\
& =4 x\left(x^{4}-6 x^{2}+2\right)
\end{aligned}
$$

- Ex: Factor the polynomial $g^{4}+24 g^{3}+12 g^{2}+4 g$.

$$
\begin{array}{ll}
g^{4}: g \cdot g \cdot g \cdot g & \\
24 g^{3}: 24 \cdot g \cdot g \cdot g & g\left(g^{3}\right)+g\left(24 g^{2}\right)+g(12 g)+g(4) \\
12 g^{2}: 12 \cdot g \cdot g & =g\left(g^{3}+24 g^{2}+12 g+4\right) \\
4 g: 4 g &
\end{array}
$$

$$
G C F=g
$$

- Factoring a Polynomial Model
- Ex: A Helicopter landing pad, or helipad, is sometimes parked with a circle inside a square so that it is visible from the air. What is the area of the shaded region of the helipad? Write your answered in factored form.

$$
\begin{aligned}
A_{\text {square }} & =2 x(2 x) \quad A_{\text {circle }}=\pi x^{2} \\
& =4 x^{2}
\end{aligned}
$$

$$
A_{\text {shade }}=4 x^{2}-\pi x^{2}
$$

$$
A_{\text {shade }}=x^{2}(4-\pi)
$$

3.3. Multiplying Binomials \& Special Cases (M2 11.3-4)

- Using the Distributive Property
- One polynomial can be distributed into another.
- Ex: What is a simpler form of $(2 x+4)(3 x-7)$?

$$
\begin{gathered}
3 x(2 x+4)-7(2 x+4) \\
6 x^{2}+12 x-14 x-28
\end{gathered}
$$

$$
6 x^{2}-2 x-28
$$

- Ex: Simplify $\underbrace{m+6})(m-7)$.
$m(m+6)-7(m+6)$

$$
\begin{gathered}
m^{2}+6 m-7 m-42 \\
m^{2}-m-42
\end{gathered}
$$

- Using FOIL
- FOIL stands for First Outer Inner Last, showing the order to multiply the terms.
- After terms have been multiplied, combine like terms.
- This method is only useful when multiplying two binomials.
- Ex: What is a simpler form of $(5 x-3)(2 x+1)$?

First outer Inner Last
$5 x(2 x)+5 x(1)+(-3)(2 x)+(-3)(1)$

$$
\begin{gathered}
10 x^{2}+5 x-6 x-3 \\
10 x^{2}-x-3
\end{gathered}
$$

- Ex: Simplify $(k-6)(k+8)$.

$$
\begin{gathered}
k(k)+k(8)+(-6)(k)+(-6)(8) \\
k^{2}+8 k-6 k-48 \\
k^{2}-2 k-48
\end{gathered}
$$

- Applying Multiplication of Binomials
- Ex: A cylinder has a height of $(x+4)$ and a radius of $(x+1)$. What is the polynomial in standard form that best describes the total surface area of the cylinder? $\quad S A=2 \pi r^{2}+2 \pi r h$
$s A=2 \pi(x+1)(x+1)+2 \pi(x+1)(x+4)$

$$
=2 \pi\left(x^{2}+2 x+1\right)+2 \pi\left(x^{2}+5 x+4\right)
$$

$=2 \pi x^{2}+4 \pi x+2 \pi+2 \pi x^{2}+10 \pi x+4 \pi$
$=4 \pi x^{2}+14 \pi x+6 \pi$

- Multiplying a Trinomial and a Binomial
- The vertical method for multiplication works best when multiplying a trinomial and a binomial.
- Ex: What is a simpler form of $\left(3 x^{2}+x-5\right)(2 x-7)$?

$$
\begin{gathered}
\begin{array}{c}
3 x^{2}+x-5 \\
2 x-7
\end{array} \\
\frac{-21 x^{2}-7 x+35}{} 6 x^{3}+2 x^{2}-10 x \\
6 x^{3}-19 x^{2}-17 x+35
\end{gathered}
$$

- Ex: Simplify $(2 g+7)\left(3 g^{2}-5 g+2\right)$.
- Squaring a Binomial
$3 g^{2}-5 g+2$
$\frac{2 g+7}{21 g^{2}-35 g+14}$
$\frac{6 g^{3}-10 g^{2}+4 g}{6 g^{3}+11 g^{2}-3 \lg +14}$
- Special rules apply to squaring binomials.
- $(a+b)^{2}=(a+b)(a+b)=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=(a-b)(a-b)=a^{2}-2 a b+b^{2}$
- The square of a binomial is the square of the first term plus twice the product of the two terms plus the square of the last term.
- Ex: Simplify the following products:

$$
\begin{aligned}
&(x+8)^{2} \\
&=x^{2}+2(8) x+8^{2} \\
&=x^{2}+16 x+64 \\
&(2 m-3)^{2} \\
&=(2 m)^{2}+2(-3)(2 m)+(-3)^{2} \\
&=4 m^{2}-12 m+9
\end{aligned}
$$

- Applying Squares of Binomials
- Ex: A square outdoor patio is surrounded by a brick walkway as shown.

What is the area of the walkway?

$$
\begin{aligned}
& (x+6)^{2}-(x)^{2} \\
= & x^{2}+2(6) x+6^{2}-x^{2} \\
= & x^{2}+12 x+36-x^{2} \\
= & 12 x+36
\end{aligned}
$$

- Finding the Product of a Sum and Difference
- The product of the sum and difference of the same two terms also produces a pattern.
○ $(a+b)(a-b)=a^{2}-b^{2}$
- Ex: What is a simpler form of $\left(x^{3}+8\right)\left(x^{3}-8\right)$?

$$
\begin{aligned}
& =\left(x^{3}\right)^{2}-(8)^{2} \\
& =x^{6}-64
\end{aligned}
$$

3.4. Factoring $x^{2}+b x+c(M 211.5)$

- Factoring $x^{2}+b x+c$ where $\mathrm{b}>0, \mathrm{c}>0$
- Ex: $(x+3)(x+7)=x^{2}+10 x+21$
- The coefficient of the trinomial's x^{2} term is 1 .
- The coefficient of the trinomial's x term, 10, is the sum of 3 and 7 from the binomials.
- The constant, 21 , is the product of 3 and 7 from the binomials.
- Ex: What is the factored form of $x^{2}+8 x+15$?

Factors of 15	Sum of Factors		
$1!15$	16		
$3!5$	8	\quad	$(x+3)(x+5)$
:---:			

- Ex: Factor $r^{2}+11 r+24$.

Factors of 15	Sum of Factors	
$1 \& 24$	25	$(r+3)(r+8)$
$2!12$	14	
$3 i 8$	11	
$4 \div 6$	10	

- Factoring $x^{2}+b x+c$ where $\mathrm{b}<0, \mathrm{c}>0$
- If the coefficient of x is negative, and the coefficient is positive, you will need to look at the negative factors of c.
- Ex: What is the factored form of $x^{2}-11 x+24$?

Fac. 24	Sum Fac.
$-1 \vdots-24$	-25
$-2!-12$	-14
$-3 \vdots-8$	-11
$-4!-6$	-10

$$
(x-3)(x-8)
$$

- Ex: Factor $y^{2}-6 y+8$.

Fac. 8	Sum Far.
$-15-8$	-9
$-2!-4$	-6

- Factoring $x^{2}+b x+c$ where $\mathrm{c}<0$
- When you factor trinomials with a negative constant term, you need to inspect pairs of positive and negative factors of c.
- Ex: What is the factored form of $x^{2}+2 x-15$?

Fac. -15	Sum Fac.	
$-1 \div 15$	14	
$1 \div-15$	-14	$(x-3)(x+5)$
$-3 \div 5$	2	
$3 \div-5$	-2	

- Ex: Factor $c^{2}-4 c-21$.

Fac	-21	Sum Fac.		
-1	21	20		$(c+3)(c-7)$
1	-21	-20		
-3	7	4		
3	-7	-4	\checkmark	

- Applying Factoring Trinomial
- The area of a rectangle is given by the trinomial $x^{2}-2 x-35$. What are the possible dimensions of the rectangle? Use factoring.

fac	-35	sum fac
-1	35	-34
-5	35	-24
-5	-2	$(x+5)(x-7)$

- Factoring a Trinomial with Two Variables
- Trinomials with more than one variable can also be factored.$\mathrm{Ex}:(p+9 q)(p+7 q)=p^{2}+16 p q+63 q^{2}$
- The trinomial may be factorable if:
- the first term includes the square of one variable,
- the middle term includes both variables, and
- the last term includes the square of the other variable.
- Ex: What is the factored form of $x^{2}+6 x y-55 y^{2}$?

Fac	-55	Sum Fac	-54		
1	-55	-54			
-1	55	54			
5	-11	-6			
-5	11	$6 v$		\quad	$(x-5 y)(x+11 y)$
:---					

- Ex: Factor $w^{2}-14 w z+40 z^{2}$.

Fac 40	Sum Fac	
-1	-40	-41
-2	-20	-22
-4	-10	-14 V

3.5. Factoring $a x^{2}+b x+c(M 211.6)$

- Consider the trinomial $6 x^{2}+23 x+7 \quad a c=6(7)=42$
- To factor it, think of 23 x as $2 \mathrm{x}+21 \mathrm{x}$ (factors of ac).
- Rewrite the trinomial: $6 x^{2}+2 x+21 x+7$
- Factor out the GCF of each pair of terms:

$$
2 x(3 x+1)+7(3 x+1)
$$

- Use the Distributive property: $(2 x+7)(3 x+1)$

$$
a=5 \quad b=11 \quad c=2
$$

$$
a=4 \quad b=-8 \quad c=3
$$

20

- Ex: What is the factored form of $5 x^{2}+11 x+2$?

$$
a c=5(2)=10
$$

Fac	10	sum Fac
1	10	11
2	5	7

$$
\begin{aligned}
& \left(5 x^{2}+10 x\right)+(x+2) \\
& 5 x(x+2)+1(x+2) \\
& (x+2)(5 x+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex: Factor } 4 n^{2}-8 n+3 . \\
& \begin{array}{lll}
\text { ac }=4(3)=12 & \left(4 n^{2}-2 n\right)+(-6 n+3) \\
\text { Fac } 12 & \text { Sum Far } & \\
\hline-1 & -12 & -13 \\
-2 & -6 & -8 \\
-3 & -4 & -7
\end{array} \\
&
\end{aligned}
$$

- Applying Trinomial Factoring $a=2 \quad b=-13 \quad c=-7 \quad \begin{aligned} & \text { Ex: The area of a rectangle is } 2 x^{2}-13 x-7 \\ & \text { dimensions of the rectangle ? Use factoring. }\end{aligned}$

$$
\begin{array}{ccc}
a c=2(-7)=-14 & \left(2 x^{2}-14 x\right)+(x-7) \\
\hline \mathrm{Fac}-14 & \text { sum } \\
\hline-1 & 14 & 13 \\
1 & -14 & -13 \\
-2 & - & 2 x(x-7)+1(x-7) \\
2 & -7 & -5 \\
\hline
\end{array}
$$

- Factoring out a Monomial First
- The GCF of a polynomial must be factored out first before you use any other form of factoring.
- Ex: What is the factored form of $18 x^{2}-33 x+12$?

$$
a=6 \quad b=-11 \quad c=4
$$

$$
3\left(6 x^{2}-11 x+4\right) \quad a c=6(4)=24
$$

Fac	24	sum
-1	-24	-25
-2	-12	-14
-3	-8	-115
-4	-6	-10

$$
\begin{aligned}
& 3\left[\left(6 x^{2}-3 x\right)+(-8 x+4)\right] \\
& 3[3 x(2 x-1)-4(2 x-1)] \\
& 3(3 x-4)(2 x-1)
\end{aligned}
$$

- Factor $6 s^{2}+57 s+72$ completely.

$$
a=2 \quad b=19 \quad c=24
$$

$$
\left.\begin{aligned}
& 3\left(2 s^{2}+19 s+24\right) \\
& \text { Fac } 48 \\
& \hline 1
\end{aligned} \frac{48}{} \right\rvert\, \frac{\text { sum }}{} \quad a c=2(24)=480\left[\left(2 s^{2}+16 s\right)+(3 s+24)\right]
$$

3.6. Factoring Special Cases (M 211.7)

- Factoring a Perfect-Square Trinomial
- Any trinomial of the form $a^{2}+2 a b+b^{2}$ or $a^{2}-2 a b+b^{2}$ is a perfect square trinomial because it is the result of squaring a binomial.
- For every real number a and b :
- $a^{2}+2 a b+b^{2}=(a+b)^{2}$
- $a^{2}-2 a b+b^{2}=(a-b)^{2}$
- Recognizing a perfect square trinomial:
- The first and last terms are perfect squares
- The middle term is twice the product of one factor from the first term and one factor from the second term.
- Ex: What is the factored form of $x^{2}-12 x+36$?

$$
\begin{aligned}
& =(x)^{2}-12 x+(6)^{2} \\
& =(x)^{2}-2(6)(x)+(6)^{2} \\
& =(x-6)^{2}
\end{aligned}
$$

- Ex: Factor $v^{2}+6 v+9$.

$$
\begin{aligned}
& =(v)^{2}+6 v+(3)^{2} \\
& =(v)^{2}+2(3)(v)+(3)^{2} \\
& =(v+3)^{2}
\end{aligned}
$$

- Factoring to Find a Length
- Ex: Digital images are composed of thousands of tiny pixels rendered as squares. Suppose the area of a pixel is $4 x^{2}+20 x+25$. What is the length of one side of the pixel?

$$
\begin{aligned}
& =(2 x)^{2}+20 x+(5)^{2} \\
& =(2 x)^{2}+2(2 x)(5)+(5)^{2} \\
& =(2 x+5)^{2} \rightarrow \text { length:2x+5}
\end{aligned}
$$

- Factoring a Difference of Two Squares
- Recall that $(a+b)(a-b)=a^{2}-b^{2}$
- Therefore, you can factor a difference of squares, $a^{2}-b^{2}$ as $(a+b)(a-b)$.
- Ex: What is the factored form of $z^{2}-9$?

$$
\begin{aligned}
& =(z)^{2}-(3)^{2} \\
& =(z+3)(z-3)
\end{aligned}
$$

- Ex: Factor $81 m^{2}-225$.

$$
\begin{aligned}
& =(9 m)^{2}-(15)^{2} \\
& =(9 m+15)(9 m-15)
\end{aligned}
$$

- Factoring Out a Common Factor
- When you factor out a polynomial, sometimes, the expression that remains is a perfect-square trinomial or the difference of two squares.
- Ex: What is the factored form of $24 g^{2}-6$?

$$
\begin{aligned}
& =6\left(4 g^{2}-1\right) \\
& =6\left[(2 g)^{2}-(1)^{2}\right] \\
& =6(2 g-1)(2 g+1)
\end{aligned}
$$

- Ex: Factor $12 x^{2}+12 x+3$.

$$
\begin{aligned}
& =3\left(4 x^{2}+4 x+1\right) \\
& =3\left[(2 x)^{2}+2(2 x)(1)+(1)^{2}\right] \\
& =3(2 x+1)^{2}
\end{aligned}
$$

3.7. Factoring by Grouping (M 211.8)

- Factoring a Cubic Polynomial
- Some polynomials with a degree > 2 can be factored.
- When using reverse FOIL (see section 3.5), we grouped terms after replacing $b x$ with factors of ac , and then factored out the GCF from each group.
- This process is called factoring by grouping.
- Ex: What is the factored form of $3 n^{3}-12 n^{2}+2 n-8$?

$$
\begin{aligned}
& =\left(3 n^{3}-12 n^{2}\right)+(2 n-8) \\
& =3 n^{2}(n-4)+2(n-4) \\
& =(n-4)\left(3 n^{2}+2\right)
\end{aligned}
$$

- Ex: Factor $8 t^{3}+14 t^{2}+20 t+35$.

$$
\begin{aligned}
& =\left(8 t^{3}+14 t^{2}\right)+(20 t+35) \\
& =2 t^{2}(4 t+7)+5(4 t+7) \\
& =(4 t+7)\left(2 t^{2}+5\right)
\end{aligned}
$$

- Factoring a Polynomial Completely
- Before grouping, you may need to factor out the GCF of all the terms.
- Ex: What is the factored form of $4 q^{4}-8 q^{3}+12 q^{2}-24 q$?

$$
\begin{aligned}
& =4\left[q^{3}-2 q^{2}+3 q-6\right] \\
& =4 q\left[\left(q^{3}-2 q^{2}\right)+(3 q-6)\right] \\
& =4 q\left[q^{2}(q-2)+3(q-2)\right] \\
& =4 q(q-2)\left(q^{2}+3\right)
\end{aligned}
$$

- Ex: Factor $5 g^{4}-5 g^{3}+20 g^{2}-20 g$ completely.

$$
\begin{aligned}
& =5 g\left[g^{3}-g^{2}+4 g-4\right] \\
& =5 g\left[\left(g^{3}-g^{2}\right)+(4 g-4)\right] \\
& =5 g\left[g^{2}(g-1)+4(g-1)\right] \\
& =5 g(g-1)\left(g^{2}+4\right)
\end{aligned}
$$

- Finding the Dimensions of a Rectangular Prism
- You can sometimes factor to find possible expressions for the length, width, and height of a rectangular prism.
- Ex: The toy shown below is made of several bars that can fold together to form a rectangular prism or unfold to form a "ladder." What expressions can represent the dimensions of the toy when it is folded up? Use factoring.

$$
a=6 \quad b=19 \quad c=15 \quad a c=70
$$

Fac	90	sum	$\cdot x\left[\left(6 x^{2}+9 x\right)+(10 x+15)\right]$
1	90	91	
2	45	47	
3	30	33	
6	15	21	
	10	19	$=x[3 x(2 x+3)+5(2 x+3)]$
	10	$=x(2 x+3)(3 x+5)$	

dimensions $x, 2 x+3,3 x+5$
width

