Unit 3: Polynomials and Factoring

3.1. Add/Subtract Polynomials (M2 11.1)

Review:

- Monomial real number, variable, or product of number and variable
 - Ex: 18 $4x^5$ y a^2bc^4
 - Degree of a Monomial sum of a monomial's variables' exponents
 - constants have a degree of 0
 - Zero has no degree
- Polynomial a monomial or sum of monomials
 - Ex: $3x^4$ $5x^2 7x$ 2a + 3b + 4c
 - Standard form of polynomial ordered from greatest degree to least degree
 - Degree of a polynomial (in one variable) is the same as the degree of the monomial with the greatest exponent.
- Adding and Subtracting Monomials
 - You can only combine like terms (same variables and degree) with addition and subtraction
 - Add/subtract the coefficients; the variables and exponents remain the same.
 - Examples:
 - $3x^{2} + 5x^{2} = 8x^{2}$ cleance: 2 • $4x^{3}y - x^{3}y = 3x^{3}y$ cleance: 4 • $8w^{2}x + w^{2}x = 9w^{2}x$ cleance: 3
 - $5bc^4 13bc^4 = -8bc^4$
- Classifying Polynomials
 - A polynomial can be named based on its degree, or the number of monomials it contains.

	Degree	Name Using	Number of	Name Using
Polynomial		Degree	Terms	Number of Terms
6	0	constant	1	monomial
5x + 9	l	linear	2	binomial
$4x^2 + 7x + 3$	2	quadratic	3	trinomial
2x ³	3	cupic	1	monomial
$8x^4 - 2x^3 + 3x$	4	Fourth degree	3	trinomial

Scanned by CamScanner

degree: 5

- Adding Polynomials
 - Add polynomials by combining like terms.
 - Ex: A researcher studied the number of overnight stays in U.S. National Park Service campgrounds and in the backcountry of the national park system over a 5-yr period. The researcher modeled the results, in thousands, with the following polynomials.

Campgrounds: $-7.1x^2 - 180x + 5800$

Backcountry: $21x^2 - 140x + 1900$

In each polynomial, x = 0 corresponds to the first year in the 5-yr period. What polynomial models the total number of overnight stays in both campgrounds and backcountry?

 $\frac{+(21x^{2} - 140x + 1900)}{[13.9x^{2} - 320x + 7700]} = [13.9x^{2} - 320x + 7700]$

Method 2:

 $(-7.1x^2 + 21x^2) + (-180x - 140x) + (5800 + 1900)$

 $5x^{2}+3$ + (15x^{2}+2) $\overline{20x^{2}+5}$

Method 1:

-7.1x2 -180x +5800

o Simplify $(5x^2 + 3) + (15x^2 + 2)$

Subtracting Polynomials

inine mini

- The opposite of addition
- Distribute the negative into the second polynomial then add the coefficients of like terms.
 - Ex: Simplify $(x^3 3x^2 + 5x) (7x^3 + 5x^2 12)$ Method 1: x3-3x2+5x + 0

$$+(7x^{3} + 5x^{2} + 0x + 12)$$

$$-6x^{3} - 8x^{2} + 5x + 12$$

 $-6\omega^{4} + 2\omega^{3} + 5\omega^{2} + \omega$

Method 2: $(x^3 - 3x^2 + 5x) - (7x^3 + 5x^2 - 12)$ $(x^3 - 7x^3) + (-3x^2 - 5x^2) + 5x + 12$ • Ex: Simplify $(-6w^4 + w^2) - (-2w^3 + 4w^2 - w)$ $-6\omega^4 + 2\omega^2 + (\omega^2 + 4\omega^2) + \omega$

3.2. Multiply/Factoring Polynomials (M2 11.2)

- Multiply a Monomial and a Trinomial
 - You can use the distributive property to multiply a monomial by a
- polynomial. • Ex: 2x(3x + 1)= 2x(3x) + 2x(1)

$$= 6x^2 + 2x$$

- $= Ex: -x^{3}(9x^{4} 2x^{3} + 7)$ = $-x^{3}(9x^{4}) - x^{3}(-2x^{3}) - x^{3}(7)$ = $-9x^{7} + 2x^{6} - 7x^{3}$
- Finding the Greatest Common Factor
 - Factoring reverses the multiplication process.
 - When factoring a monomial from a polynomial, the first step is to find the greatest common factor (GCF) of the polynomial's terms.
 - Ex: What is the GCF of the terms of $5x^3 + 25x^2 + 45x$?

5x3: 5 x.X.K 25x2: 5 45x: 3.3

GCF = 5x

Ex: Find the GCF of the terms of the polynomial 45b + 27.

456: 3 5.6 27:

GCF = 9

- Factoring Out a Monomial
 - Once you find the GCF of a polynomial's terms, you can factor it out of the polynomial.
 - Ex: What is the factored form of $4x^5 24x^3 + 8x$?

 $\begin{array}{rcl} 4_{X^{5}} & (2 \cdot 2 \cdot x \cdot x \cdot x \cdot x \cdot x) \\ -24_{X^{3}} & (-1) & (-2) &$

$$= 4x(x^{4}) + 4x(-6x^{2}) + 4x(2)$$

$$= 4 \times (x^4 - 6x^2 + 2)$$

- Ex: Factor the polynomial $g^4 + 24g^3 + 12g^2 + 4g$. $g^4: 9.9.9.9$ $a + g^3: 24 - 9.9.9$ $12 g^7: 12 g.9$ 4g: 4 - 9GCF = g
- Factoring a Polynomial Model
 - Ex: A Helicopter landing pad, or helipad, is sometimes parked with a circle inside a square so that it is visible from the air. What is the area of the shaded region of the helipad? Write your answered in factored form. $A_{square} = 2 \times (2 \times) \qquad A_{circle} = TTX^{2}$ $= 4x^{2}$

 $A_{\text{shade}} = 4x^2 - \pi x^2$

$$A_{\text{shade}} = \chi^2 (4 - \Pi)$$

everta a x ou

486: 6161D

8-18-11 11-18

o suo a votori ano poy prante a farmercho e

XHIS TOD REPORT OF A DESCRIPTION OF A DESCRIPTION

(Deffect the set of th

Const Were " X. At 2

3.3. Multiplying Binomials & Special Cases (M2 11.3-4)

Using the Distributive Property

0

- One polynomial can be distributed into another.
- Ex: What is a simpler form of (2x + 4)(3x 7)?

$$3x (2x+4) - 7 (2x+4)$$

$$6x^{2} + 12x - 14x - 28$$

$$6x^{2} - 2x - 28$$
Ex: Simplify $(m+6)(m-7)$.
$$m(m+6) - 7(m+6)$$

$$m^{2} + (em - 7m - 42)$$

$$m^{2} - m - 42$$

- Using FOIL
 - FOIL stands for First Outer Inner Last, showing the order to multiply the terms.
 - After terms have been multiplied, combine like terms.
 - This method is only useful when multiplying two binomials.
 - Ex: What is a simpler form of (5x 3)(2x + 1)?

First Outer Inner Last

$$5x(2x) + 5x(1) + (-3)(2x) + (-3)(1)$$

 $10x^2 + 5x - 6x - 3$
[$10x^2 - x - 3$]
Ex: Simplify $(k - 6)(k + 8)$.
 $k(k) + k(8) + (-6)(k) + (-6)(8)$

- Applying Multiplication of Binomials
 - Ex: A cylinder has a height of (x + 4) and a radius of (x + 1). What is the polynomial in standard form that best describes the total surface area of the cylinder? $5A = 2\pi r^2 + 2\pi rh$

$$5A = 2\pi (\chi + I)(\chi + I) + 2\pi (\chi + I)(\chi + 4)$$

= $2\pi (\chi^2 + 2\chi + I) + 2\pi (\chi^2 + 5\chi + 4)$
= $2\pi \chi^2 + 4\pi \chi + 2\pi + 2\pi \chi^2 + 10\pi \chi + 4\pi$

$$= |4\pi x^2 + 14\pi x + 6\pi|$$

- Multiplying a Trinomial and a Binomial
 - The vertical method for multiplication works best when multiplying a trinomial and a binomial.

Scanned by CamScanner

• Ex: What is a simpler form of $(3x^2 + x - 5)(2x - 7)$? $3x^2 + x - 5$ 2x-7 -ZIX-7x +35 6x3+ 1x2-10x 6x3-19x2-17x+35 Ex: Simplify $(2g + 7)(3g^2 - 5g + 2)$. 0 392-59+2 319+14 Squaring a Binomial Special rules apply to squaring binomials. 0 • $(a+b)^2 = (a+b)(a+b) = a^2 + 2ab + b^2$ o $(a-b)^2 = (a-b)(a-b) = a^2 - 2ab + b^2$ The square of a binomial is the square of the first term plus twice the product of the two terms plus the square of the last term.

Ex: Simplify the following products:

Ex. simplify the following products:

$$(x + 8)^{2}$$

$$= \chi^{2} + 2(8)\chi + 8^{2}$$

$$= \chi^{2} + 1(6\chi + 64)$$

$$(2m - 3)^{2}$$

$$= (2m)^{2} + 2(-3)(2m) + (-3)^{2}$$

$$= 4m^{2} - 12m + 9$$
s of Binomials

- Applying Squares of Binomials
 - Ex: A square outdoor patio is surrounded by a brick walkway as shown.
 What is the area of the walkway?

Finding the Product of a Sum and Difference

• The product of the sum and difference of the same two terms also produces a pattern.

 $= (x^3)^2 - (8)^2$

= x6-64

- $(a+b)(a-b) = a^2 b^2$
- Ex: What is a simpler form of $(x^3 + 8)(x^3 8)$?

3.4. Factoring $x^2 + bx + c$ (M2 11.5)

- Factoring $x^2 + bx + c$ where b > 0, c > 0
 - Ex: $(x+3)(x+7) = x^2 + 10x + 21$
 - The coefficient of the trinomial's x² term is 1.
 - The coefficient of the trinomial's x term, 10, is the sum of 3 and 7 from the binomials.
 - The constant, 21, is the product of 3 and 7 from the binomials.
 - Ex: What is the factored form of $x^2 + 8x + 15$?

1 actors 01 15	Juniorractore	
1 ¢ 15	16	(X+3)(X+5)
3:5	8 1	

• Ex: Factor $r^2 + 11r + 24$.

Factors of 15	Sum of Factors
1 (24	25
2112	14
318	11 1
4:6	10

- Factoring $x^2 + bx + c$ where b < 0, c > 0
 - If the coefficient of x is negative, and the coefficient is positive, you will need to look at the negative factors of c.
 - Ex: What is the factored form of $x^2 11x + 24$?

• Factoring $x^2 + bx + c$ where c < 0

- When you factor trinomials with a negative constant term, you need to inspect pairs of positive and negative factors of c.
 - Ex: What is the factored form of $x^2 + 2x 15$?

 Fac. -15 Sum Fac.

 $-1 \stackrel{?}{:} 15$ 14

 $1 \stackrel{?}{:} -15$ -14

 $-3 \stackrel{?}{:} 5$ 2 \checkmark
 $3 \stackrel{?}{:} -5$ -2

$$(X-3)(X+5)$$

((r+3)(r+8)

- Applying Factoring Trinomials
 - The area of a rectangle is given by the trinomial $x^2 2x 35$. What are the possible dimensions of the rectangle? Use factoring.

$$-35$$
 sum Fac
 -35 -34 $(\lambda+5)(\lambda-7)$

- Factoring a Trinomial with Two Variables
 - Trinomials with more than one variable can also be factored.

• Ex:
$$(p + 9q)(p + 7q) = p^2 + 16pq + 63q^2$$

- The trinomial may be factorable if:
 - the first term includes the square of one variable,
 - the middle term includes both variables, and
 - the last term includes the square of the other variable.

1. St. 3.

• Ex: What is the factored form of $x^2 + 6xy - 55y^2$?

Fac - 55	Sum Fac	(x - 5y)(x + 11y)
1 -55	-54	$\left[(x - y)(x + iiy) \right]$
-1 55	-6	
-5 11	Sum Fac -54 54 -6 6	25- 14- 14-

0	Ex: Factor $w^2 - 14wz + 40z^2$.			
	Fac 1	HO	Sum Fac	1 61 ⁻ 61 -
	-1 -2	40.	-41	(W-4z)(W-10z)
	-4	-20 -10	-14 /	

3.5. Factoring $ax^2 + bx + c$ (M2 11.6) Factoring when ac is positive 0=6 b=23 c=7 ac=6(7)=42 • Consider the trinomial $6x^2 + 23x + 7$. To factor it, think of 23x as 2x + 21x (factors of ac). Rewrite the trinomial: $6x^2 + 2x + 21x + 7$ Factor out the GCF of each pair of terms: 2x(3x+1) + 7(3x+1)Use the Distributive property: (2x + 7)(3x + 1)• Ex: What is the factored form of $5x^2 + 11x + 2$? a=5 b=11 c=2 ac = 5(2) = 10 $(5x^{2}+10x)+(x+2)$ Fac 10 | sum Fac 1 10 5x(x+2)+1(x+2)2 5 (x+2)(5x+1)Q=4 b=-8 c=3 • Ex: Factor $4n^2 - 8n + 3$. $(4n^2 - 2n) + (-6n + 3)$ 0.c = 4(3) = 12Fac 12 | Sum Fac 2n (n-1) - 3(2n-1) -1 -12 -13 -2 -6 -81 (2n-3)(2n-1)Factoring when ac is negative You will need to consider positive and negative factors of ac. a=3 b=4 c=-15 • Ex: What is the factored form of $3x^2 + 4x - 15$? ac= 3(-15) = -45 -45 sim fac. $(3x^2+9x) + (-5x - 15)$ 45 44 -44 -45 3x(x+3)-5(x+3)12 15 -3 -12 3 -15 (3x-5)(x+3)4 1 9 -5 -4 -9 a=4 b=-5 c=-6 • Ex: Factor $4w^2 - 5w - 6$. ac = 4(-6) = -24 Sum Fac Fac - 24 $(4\omega^2 - 8\omega) + (3\omega - 6)$ 23 -1 24 -23 1 -24 $4\omega(\omega - 2) + 3(\omega - 2)$ 10 -2 12 -10 2 -12 5 -5 V -3 8 (4w+3)(w-2)-8 3 6 -4 -6 4

Applying Trinomial Factoring

• Ex: The area of a rectangle is $2x^2 - 13x - 7$. What are the possible a=2 b=-13 c=-7 dimensions of the rectangle? Use factoring.

Factoring out a Monomial First

0

- The GCF of a polynomial must be factored out first before you use any 0 other form of factoring.
 - Ex: What is the factored form of $18x^2 33x + 12$?

 $3(6x^2 - 11x + 4)$ ac = 6(4) = 24

a=2 b=19 c=24

Scanned by CamScanner

1 20 De :

3.6. Factoring Special Cases (M2 11.7)

- Factoring a Perfect-Square Trinomial
 - Any trinomial of the form $a^2 + 2ab + b^2$ or $a^2 2ab + b^2$ is a perfect square trinomial because it is the result of squaring a binomial.
 - For every real number a and b:
 - $a^2 + 2ab + b^2 = (a + b)^2$
 - $a^2 2ab + b^2 = (a b)^2$
 - Recognizing a perfect square trinomial:
 - The first and last terms are perfect squares
 - The middle term is twice the product of one factor from the first term and one factor from the second term.
 - Ex: What is the factored form of $x^2 12x + 36$?

• Ex: Factor $v^2 + 6v + 9$.

$$= (v)^{2} + (u + (3))$$

 $= (V)^{2} + 2(3)(V) + (3)^{2}$

Factoring to Find a Length

• Ex: Digital images are composed of thousands of tiny pixels rendered as squares. Suppose the area of a pixel is $4x^2 + 20x + 25$. What is the length of one side of the pixel?

$$= (2x)^{2} + 20x + (5)^{2}$$

= $(2x)^{2} + 2(2x)(5) + (5)^{2}$
= $(2x + 5)^{2}$ \longrightarrow [length : 2x+5]

- Factoring a Difference of Two Squares
 - Recall that $(a+b)(a-b) = a^2 b^2$
 - Therefore, you can factor a difference of squares, $a^2 b^2$ as (a + b)(a b).
 - Ex: What is the factored form of $z^2 9$?

$$= (\Xi)^{2} - (3)^{2}$$
$$= (\Xi + 3)(\Xi - 3)$$

• Ex: Factor $81m^2 - 225$.

$$= (9m)^2 - (15)^2$$

$$=$$
 (9m+15)(9m-15)

- Factoring Out a Common Factor
 - \circ When you factor out a polynomial, sometimes, the expression that remains is a perfect-square trinomial or the difference of two squares.
 - Ex: What is the factored form of $24g^2 6$?

 $= 6 (4g^{2} - 1)$ $= 6 [(2g)^{2} - (1)^{2}]$ = (6(2g-1)(2g+1))• Ex: Factor $12x^2 + 12x + 3$.

i - sçal) a - a (e) (Tari

 $= 3(4x^{2}+4x+1)$ $= 3 \left[(2x)^{2} + 2(2x)(1) + (1)^{2} \right]$ $= 3(2 \times +1)^{2}$

and the State of the

3.7. Factoring by Grouping (M2 11.8)

E CE

- Factoring a Cubic Polynomial
 - Some polynomials with a degree > 2 can be factored.
 - When using reverse FOIL (see section 3.5), we grouped terms after replacing bx with factors of ac, and then factored out the GCF from each group.
 - This process is called factoring by grouping.
 - Ex: What is the factored form of $3n^3 12n^2 + 2n 8$?

 $= (3n^3 - 12n^2) + (2n - 8)$ = 3n2(n=4)+2(n=4) = $(n-4)(3n^2+2)$

- Ex: Factor $8t^3 + 14t^2 + 20t + 35$.
 - $= (8t^{3} + 14t^{2}) + (20t + 35)$ $= 2t^{2}(4t + 7) + 5(4t + 7)$ $= (4t + 7)(2t^{2} + 5)$
- Factoring a Polynomial Completely
 - Before grouping, you may need to factor out the GCF of all the terms.
 - Ex: What is the factored form of $4q^4 8q^3 + 12q^2 24q$?

 $= 4q[q^{3} - 2q^{2} + 3q - t5]$ $= 4q[(q^{3} - 2q^{2}) + (3q - 6)]$ $= 4q[q^{2}(q - 2) + 3(q - 2)]$ $= [4q(q - 2)(q^{2} + 3)]$

• Ex: Factor $5g^4 - 5g^3 + 20g^2 - 20g$ completely.

 $= 59 \left[q^{2} - q^{2} + 4q - 4 \right]$ $= 5q \left[(q^3 - q^2) + (4q - 4) \right]$ $= 59 \left[9^2(9-1) + 4(9-1) \right]$ $= 59(9-1)(9^2+4)$

- Finding the Dimensions of a Rectangular Prism
 - You can sometimes factor to find possible expressions for the length, width, and height of a rectangular prism.
 - Ex: The toy shown below is made of several bars that can fold together to form a rectangular prism or unfold to form a "ladder." What expressions can represent the dimensions of the toy when it is folded up? Use factoring.

 $V = 6x^3 + 19x^2 + 15x$ X (6x2+19x+15 a=6 b=19 ac = 90 C= 15 $\times [(6x^2 + 9x) + (10x + 15)]$ Fac 90 Sum 91 90 2 45 47 $= X \left[3x(2x+3) + 5(2x+3) \right]$ 33 30 21 15 = X(2x+3)(3x+5)19 10 dimensions: x, Zx+3, 3x+5 T T T width length height

Scanned by CamScanner

(....