

Unit 7

Probability
M2 13.1,2,4, 5,6

7.1 Probability

-Obj.: I will be able to determine the experimental and theoretical probabilities of an event, or its complement, occurring.
-Vocabulary

。 Outcome	。 Event	\circ Sample Space \circ_{\circ} Probability
\circ Experimental Probability	\circ Theoretical Probability	
\circ Complement of an Event	\circ	

7.1 Probability

-Outcomes
-An outcome is the possible result of a situation or experiment.
-An event may be a single outcome or a group of outcomes
-The set of all possible outcomes is the sample space

7.1 Probability

-Probabilities
-Probability
-A numerical value from 0 to 1 that measures the likelihood of an event
■Notation: P(event)

- $P($ event $)=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}$

7.1 Probability

-Experimental Probability
-The likelihood that an event occurs based on the actual results of an experiment

- $P($ event $)=\frac{\text { number of times the event occurs }}{\text { number of times the experiment is done }}$
-Theoretical Probability
-The likelihood of an event based on mathematical reasoning

7.1 Probability

-Complement of an event
-Consists of all the possible outcomes in the sample space that are not part of the event.
-Probability of a Complement
-The sum of the probability of an event and its complement is 1

- Notation: P (not event)

■ $P($ event $)+P($ not event $)=1$
$P($ not event $)=1-P($ event $)$

7.1 Probability - Practice

You roll a standard number cube 10 times. The results are shown below.

$$
6,4,6,1,5,2,4,2,4,3
$$

Find the experimental probability of each outcome.

1. P(rolling an even number)
Find the theoretical probability of each outcome.
2. P (rolling a 5)
4
3. P (rolling an odd number)
6
4. P (rolling a 1)

A bag contains 2 red ping-pong balls, 3 green ping-pong balls, 3 blue ping-pong balls, and 1 yellow pingpong ball. Find the probability of randomly selecting each outcome.
7. P (not red)
8. P (not green)

Two standard number cubes are rolled. Find each probability.
9. $P($ a sum equal to 2$)$
10. $P($ sum not equal to 2$)$
11. P(a product equal to 15$)$
12. $P($ a sum greater than 6$)$

7．2 Tables

■Obj．：I will be able to read frequency tables and two－way frequency tables．I will be able to determine relative frequencies， probability distributions，and conditional probabilities of events．
－Vocabulary

－Frequency Table	。Relative Frequency	。Probability Distribution
Two－Way Frequency Table 。Conditional Probability		

7.2 Tables

- Frequency Tables
-Displays data that shows how often an item appears in a category
-Relative Frequency
-Relative frequency is the ratio of the frequency of the category to the total frequency
-Can be used to approximate probabilities of events

7.2 Tables

-Probability Distribution
-Shows the probability of each possible outcome.
-Can be shown in a frequency table
-Two-Way Frequency Tables
-A.k.a. contingency table

- Frequencies of data in two different categories

7.2 Tables

-Conditional Probability
-The probability that an event will occur given that another event has already occurred
-Probability of event B given that event A has occurred: $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

7.2 Tables - Practice

Camp Activities

1. Waterskiing
2. Hiking
3. Canoeing

Activity	Number of People
Waterskiing	12
Hiking	18
Canoeing	13

Colors	RR	RB	RG	BB	BR	BG	GG	GR	GB
Frequency	3	5	2	1	4	2	3	2	1

4. What is the probability of spinning red exactly once on the next two spins?
5. What is the probability of spinning blue twice on the next two spins?
6. What is the probability that a randomly chosen patient exercised and did not catch a cold?
7. What is P (did not exercise | did not catch a cold)?

	Caught a cold	Did not catch a cold	Totals
Exercised	8	30	38
Did not exercise	10	2	12
Totals	18	32	50

7.2 Tables - Practice

9. What is P (girl)?
10. What is P (has not played tennis)?

	Has played tennis	Has not played tennis	Totals
Boys	10	6	16
Girls	10	4	14
Totals	20	10	30

11. What is the probability that a randomly selected student has a yard given that they have pets?
12. What is P (does not have a yard | have no pets)?

	Pets	No pets	Totals
Yard	0.60	0.05	0.65
No yard	0.25	0.10	0.35
Totals	0.85	0.15	1

13. What is P (has red berries \mid has lobed leaves)?
14. What is P (has lobed leaves | has red berries)?

	Lobed Leaves	Non-lobed Leaves	Totals
Red Berries	12	48	60
No Red Berries	40	0	40
Totals	52	48	100

7.3 Compound Probabilities

- Compound Events
-Events that are made up of two or more events
-If the occurrence of an event does not affect how another event occurs, the events are called independent events.
-If the occurrence of an event does affect how another event occurs, the events are called dependent events.
\square Two events are independent if and only if $P(A$ and $B)=P(A) * P(B)$

7.3 Compound Probabilities

-Mutually Exclusive Events
-Events that cannot happen at the same time -The probability of both A and B occurring is 0 .
\square If A and B are mutually exclusive events, then $P(A$ and $B)=0$, and $P(A$ or $B)=P(A)+P(B)$
-Overlapping Events
-Events with outcomes in common.
-If A and B are overlapping events, then $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

7.3 Compound Probabilities Practice

1. You roll a 2 on a number cube and spin a 3 on a spinner.
2. What is $P(A$ and $B)$ if $P(A)=\frac{1}{2}$ and $P(B)=\frac{2}{7}$, where A and B are independent events?
3. What is $P(A$ or $B)$ if $P(A)=32 \%$ and $P(B)=17 \%$, where A and B are mutually exclusive events?
4. What is $P(A$ or $B)$ if $P(A)=\frac{1}{4}$ and $P(B)=\frac{1}{2}$, where A and B are overlapping events?
5. In a local town, 55% of the residents drive to work, 23% of the residents own a dog, and 6% of the residents walk to work. Find the probability that a randomly chosen resident owns a dog or walks to work.
6. What is the probability of the arrow stopping on a consonant or one of the first 4 letters of the alphabet?
7. What is the probability of the arrow stopping on " X " on the first spin and " F " on the second spin?

7.4 Conditional Probabilities

-Obj.: I will be able to calculate the conditional probability of events without a table. I will be able to determine if two events are independent using conditional probabilities.

7.4 Conditional Probabilities

-Conditional Probabilities
-For any two events A and B, the probability of B occurring, given that A has occurred, is

$$
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}, \text { where } P(A) \neq 0
$$

-Not reversible $\rightarrow P(B \mid A) \neq P(A \mid B)$
-The formula for conditional probabilities can be rearranged to solve for the probability of two events occurring when you k now the conditional probability:
$P(A$ and $B)=P(A) * P(B \mid A)$

7.4 Conditional Probabilities

-Independent Events
\square Two events A and B are independent events if and only if $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$

7.4 Conditional Probabilities Practice

At a recent swim meet, half of the swim club members experienced an improvement in their race times over a previous swim meet. The probability of a swim club member experiencing an improvement in their race time and training the week before the meet was 30%.

1. What is the probability that a swimmer trained the week before the meet given that his or her race time improved?
2. Half of a class took Form A of a test, and half took Form B. Of the students who took Form B, 39\% passed. What is the conditional probability that a randomly chosen student took Form B and passed?
3. In the senior class, 24% of the students play softball, 32% of the students play field hockey, and 14% play both. What are the probabilities that a softball player also plays field hockey, and a field hockey player also plays softball?

7.4 Conditional Probabilities Practice

Use the diagram at the right for Exercises 6 and 7. The tree diagram shows the percentages of plants that received sunlight and whether or not they grew.
6. What is the combined probability that a plant grew?
7. What is the combined probability that a plant did not grow?

9. Of a group of friends, 28% take dance lessons, 32% take singing lessons, and 8% take both. What is the probability that a dancer takes singing lessons? What is the probability that a singer takes dance lessons?

