

1. Solve: $2(7 v-3)+7 v=120$

Copy down each problem and
2. Solve: $-2(1+3 n)=-20-3 n$
3. Factor: $x^{2}-11 x+18$
4. Factor: $b^{2}+11 b+24$

Objective and Vocabulary		
Obj.: I will be able to identify and write rules for dilations. I will be able to dilate a shape about a given point. Vocabulary		
o Enlargement	○ Reductions	\circ Scale Factors
o Translation	\circ Preimage	\circ Image

- Transformations - changes in position, shape, or size of a figure.
- Flips, slides, and turns are transformations that keep shape and size the same
-Called rigid motions
- Only change position
- Original figure is called the preimage
- Transformed figure is called the image

- A Dilation makes a figure bigger or smaller (NOT A RIGID MOTION!)
-Center of Dilation is the point around which the dilation occurs.
-The image of the center of dilation is itself.
-Scale Factor (n) indicates how the size will change (n is positive)
-Enlargement (gets bigger) $\mathrm{n}>1$
-Reduction (gets smaller) $0<n<1$
- Calculated by $n=$ image eength/preimagee ength for corresponding parts
- Notation
- Around the origin
- $D \downarrow n(x, y)=(n x, n y)$
- Around other points

- Dilations and scale factors can be used to understand realworld enlargements and reductions, such as seeing images through a microscope or on a computer screen.

-Complete 1.1 Dilations on MathXLforschool.com

- Translations slide figures. (RIGID MOTION)
- All points are translated the same distance in the same direction.
- Sides maintain their lengths.
- Angles stay the same measure.
- Notations
-Function notation: $T-\downarrow<h, k>(A B C D)=A^{\prime} B^{\prime} C^{\prime} D^{\prime}$
-h is horizontal translation (neg = left, pos = right)
-k is vertical translation (neg = down, pos = up)
-Coordinate notation: $(x, y) \rightarrow(x+h, y+k)$
- Writing Translation Rules
- Use function notation
- Pick one point and find its image.
- Count how many spaces horizontally the point move (h). Repeat for vertical distance (k).
- Fill in function notation with h and k and the name of the preimage and image.

Copy down each problem and show all work. Submit to the box at the front with your period marked on it.

1. Does the image show a rigid motion? Explain.
2. Give the rule to translate $A B C D 3$ spaces left and 2 spaces up.
3. If $A(2,3), B(2,6), \& C(5,4)$, and $T_{<-1,-3\rangle}(\triangle A B C)$ what are the coordinates of $A^{\prime}, B^{\prime}, \& C^{\prime}$?
4. Write the rule for the translation of DEFG directly to LMNO:

$$
\mathrm{T}_{<2,5>}(\mathrm{DEFG})=\mathrm{HIJK} \text { and } \mathrm{T}_{<-8,2>}(\mathrm{HIJK})=\mathrm{LMNO}
$$

- A reflection is a flip of a figure. (RIGID MOTION)
- Reflected figures have opposite orientations
- Line of reflection:
-The line over which the figure was reflected.
-The image of any point on the line of reflection is itself (it doesn'† move)

| Perpendicular bisector of the line between corresponding |
| :--- | :--- |
| points of the image and preimage |
| Cuts the line in half |
| Intersects the line at a right angle |

- Writing Reflection Rules
-Try connecting corresponding points between two image to see if the line of reflection is a perpendicular bisector. If not, the images are not reflections of one another over that line.
- Remember that an image can be reflected back over the same line of reflection onto its preimage.
- Reflections over other lines
-Horizontal ($\mathrm{y}=\mathrm{\#}$): Relate the location of the preimage to the line of reflection (how far above or below it is), and plot that many spaces on the other side. The x-value stays the same.
- Vertical (x = \#): Relate the location of the preimage to the line of reflection (how far left or right it is), and plot that many spaces on the other side. The y-value stays the same.

1.3 Reflections - Honors Only -Diagonal Lines - $R \downarrow y=x \cdot(x, y) \rightarrow(y, x)$ - $R \downarrow y=-x \quad \cdot(x, y) \rightarrow(-y,-x)$

1. $R_{y-\text {-xxis }}(A B C) ; A(-4,-1), B(-4,1), C(0,-3)$
2. $R_{y-\text { axis }}(F G H) ; F(-4,-3), G(-5,2), H(-1,-2)$
3. $R_{x-\text {-xxis }}(U T S) ; U(-2,-4), T(-3,0), S(1,-1)$
4. $R_{x-\text { axis }}(R S T) ; R(3,-3), S(2,1), T(4,2)$

Copy down each problem and show all work. Submit to the box at the front with your period marked on it. Find the coordinates of the image for each of the indicated reflections.

- Obj.: I will be able to identify and write rules for rotations. I will be able to rotate a shape about a given point.
- Vocabulary

\circ Rotation	\circ Center of Rotation	\circ Angle of Rotation

- A rotation is a turn of a figure. (RIGID MOTION)
- The point about which a figure is rotated is called the center of rotation.
- The center of rotation does not move.
The number of degrees a figure rotates is the angle of
rotation
The angle between the preimage and the image with
the center of rotation at the vertex.
Figures are rotated counterclockwise unless otherwise
stated.

Rotation about other points
Subtract the center of rotation from each of the vertex
coordinates. (Translate the shape so that the center of
rotation is the origin)
Rotate using the rule above for each point.
Add the center of rotation back to each point. (Translate
the figure back for the correct center of rotation)

| Complete 1.4 Rotations on |
| :--- | :--- |
| MathXLforschool.com |
| MRotations - Assignment |

Copy down each problem and show all work

1. For the given points, $A^{\prime} B^{\prime}$ is a translation of $A B$. Write a rule to describe the translation. $\mathrm{A}(-6,1), \mathrm{B}(5,3), \mathrm{A}^{\prime}(-5,10), \mathrm{B}^{\prime}(6,12)$
2. Point $C(x, y)$ moves 4 units right and 9 units down. Write a rule in coordinate notation. $(x, y) \rightarrow$?
3. Find the value of each variable in the diagram.

4. Solve the equation by finding square roots: $x^{2}-16=0$

- Obj.: I will be able to recognize and perform a composition of isometries and identify the individual isometries. I will be able to perform a glide reflection for a figure.
- Vocabulary

○ Glide Reflection	० Isometry	

- An isometry is a transformation that preserves distance, or length.
- Rigid motions are isometries
- All isometries are compositions of reflections.
- Four kinds of isometries
- Translation
- Rotation
- Reflection
- Glide Reflection

- A composition of reflections across two intersecting lines is a rotation
- 2 ways to write
- $(R \downarrow m \circ R \downarrow l)(\triangle A B C)=\Delta A^{\prime \prime} B^{\prime} C^{\prime}$
- $R \downarrow m(R \downarrow l(\triangle A B C))=\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$
- The figure is rotated about the int

-The angle of rotation is equal to twice the angle between the two lines through which the figure was reflected.

-Complete 1.5 Compositions of Isometries on MathXLforschool.com

-Complete Review 1

