Unit 1 - Linear Expressions

1.1 Operations with Negative Numbers

- Order of Operations (P E MD AS)
- Grouping/Parentheses
- Exponents
- Multiplication/Division (in order as written)
- Addition/Subtraction (in order as written)
- Real numbers include numbers on both sides of the number line. We need to be able to perform arithmetic operations on al real numbers, both positive and negative.
- On the number line, values increase towards the right and decrease towards the left.

- Addition
- When adding a positive number, move right on the number line.
- Examples: $3+2=5$ and $-4+1=-3$
- When adding a negative number, move left on the number line.
- Examples: $3+-2=-1$ and $-7+-4=-11$
- General rules:
- When adding two values with the same sign, add the absolute value of each number and keep the sign.
- When adding two values with different signs, find the difference of the absolute values of each number and keep the sign of the addend with the greater absolute value.
- Subtraction
- Can be restated as addition (adding the inverse)
- Examples: $-3-2=-3+-2=-5$ and $2-6=2+6=-4$
- Multiplication and division
- When multiplying/dividing two values with the same sign, the product is always positive.
- Examples of Multiplication: (3)(4) $=12$ and $(-5)(-3)=15$
- Examples of Division: $14 / 7=2$ and $-18 /-2=9$
- When multiplying/dividing two values with different signs, the product is always negative
- Examples of Multiplication: $(3)(-6)=-18$ and $(-9)(4)=-36$
- Examples of Division: $-16 / 4=-4$ and $108 /-12=-9$
- When multiplying many factors to find a product, multiply two values at a time.
- Exponents
- When a negative number is raised to an exponent, one of two cases occurs:
- If the exponent is odd, the answer will be negative [Ex: $\left.(-3)^{3}=-27\right]$
- If the exponent is even, the answer will be positive [Ex: $\left.(-3)^{2}=9\right]$

1.2 Operations with Fractions

- Fractions are just division! $\frac{\text { numerator }}{\text { denominator }}$
- Simplifying Fractions
- A fraction can be simplified if both the numerator (top number) and the denominator (bottom number) have a common factor.
- Example: $\frac{15}{10} \rightarrow$ both 15 and 10 are divisible by 5 (GCF). $\frac{15 \div 5}{10 \div 5}=\frac{3}{2}$
- All answers given as fractions should be given in the simplest form.
- Multiplication
- When multiplying fractions, multiply the numerators together to get the numerator of the product and the denominators together to get the denominator of the product.
- Then reduce the fraction if necessary.
- Formula: $\frac{a}{b} * \frac{c}{d}=\frac{a b}{c d}$
- Example: $\frac{3}{4} * \frac{1}{5}=\frac{3 * 1}{4 * 5}=\frac{3}{20}$
- Division
- Division is the inverse of multiplication. In order to divide fractions, change them to multiplication of the reciprocal.
- Follow the multiplication procedure from this point. Reduce if necessary.
- Formula: $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} * \frac{d}{c}=\frac{a d}{b c}$
- Example: $\frac{8}{11} \div \frac{1}{2}=\frac{8}{11} * \frac{2}{1}=\frac{8 * 2}{11 * 1}=\frac{16}{11}$
- Addition/Subtractions
- Like Fractions
- When fractions have the same denominator, they are called "like fractions" and can be easily added/subtracted.
- Add/subtract the numerators and keep the denominator. Reduce.
- Formula: $\frac{a}{c} \pm \frac{b}{c}=\frac{a \pm b}{c}$
- Examples: $\frac{3}{8}+\frac{1}{8}=\frac{3+1}{8}=\frac{4}{8}=\frac{1}{2} \quad$ and $\quad \frac{15}{16}-\frac{4}{16}=\frac{15-4}{16}=\frac{11}{16}$
- Unlike Fractions
- When fractions do not have the same denominator, they are called "unlike fractions."
- To add/subtract, they must be converted to "like fractions."
- Finding the ECD (easiest common denominator) \rightarrow multiply the denominators together.
- To convert two fractions in the same expression: multiply each fraction by the other fraction's denominator over itself.
- Then follow rules with "like fractions."
- Formula: $\frac{a}{b} \pm \frac{c}{d}=\left(\frac{d}{d}\right)\left(\frac{a}{b}\right) \pm\left(\frac{c}{d}\right)\left(\frac{b}{b}\right)=\frac{a d \pm b c}{b d}$
- Example: $\frac{6}{7}+\frac{4}{5}=\left(\frac{5}{5}\right)\left(\frac{6}{7}\right)+\left(\frac{4}{5}\right)\left(\frac{7}{7}\right)=\frac{30}{35}+\frac{28}{35}=\frac{58}{35}$
- Converting Mixed Numbers to Improper Fractions
- Mix number consists of a whole number and a fraction. (Ex: $1 \frac{1}{2}$)
- To convert from a mixed number to an improper fraction, multiply the whole number by the denominator over itself, then add the two fractions together.
- Example: Rewrite $7 \frac{3}{4}$ as an improper fraction
- The denominator $=4$. convert $\left(\frac{4}{4}\right)\left(\frac{7}{1}\right)=\frac{28}{4}$ then add: $\frac{28}{4}+\frac{3}{4}=\frac{31}{4}$

1.3 Conversions Using Dimensional Analysis

- Dimensional analysis is the method of converting different units of measurement, such as cm to inches, feet to meters, kilometers to meters, etc.
- Conversion factors are fractions (=1) that can be made from equalities relating two units.
- Examples: $2.54 \mathrm{~cm}=1 \mathrm{in}$. can be written as $\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}$ or $\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}$

$$
32^{\circ} \mathrm{F}=273.15 \mathrm{~K} \text { can be written as } \frac{32^{\circ} \mathrm{F}}{273.15 \mathrm{~K}} \text { or } \frac{273.15 \mathrm{~K}}{32^{\circ} \mathrm{F}}
$$

- Conversion factors allow for measurements in one unit to be expressed equivalently in another unit.
- If a unit is raised to an exponent, the conversion factor between it and another unit can be raised to that exponent to relate them.
- Example: if $1 \mathrm{~m}=3.28 \mathrm{ft}$, then $\left(\frac{1 \mathrm{~m}}{3.28 f t}\right)^{3}=\frac{(1 \mathrm{~m})^{3}}{(3.28 f t)^{3}}=\frac{1 \mathrm{~m}^{3}}{35.29 f t^{3}}$
- Using a grid can help to see which form of the conversion factor you will need.

- Always start with the value to be converted.
- Place conversion factors into the grid such that units will cancel out (remember that anything divided by itself $=1$, including units!)
- Example: Convert 25 inches to centimeters.

$$
\begin{array}{l|l}
25 \text { inches } & 2.54 \mathrm{~cm} \\
& 1 \text { inch }
\end{array}=\left(\frac{25}{1}\right)\left(\frac{2.54}{1}\right)=63.5 \mathrm{~cm}
$$

- Multiple conversions can be done in this format at the same time.
- Make sure to cancel out units as you go to keep track of what you have.
- Example: Convert 10 years to seconds.

| 10 years | 365.25 tays | 24 hours | 60 mim | 60 seconds |
| :---: | :---: | :---: | :---: | :---: |$=315576000$ seconds

- Conversions can also be done for units in the denominator or both numerator and denominator.
- Example: Convert $15 \mathrm{~g} / \mathrm{mL}$ to g / L

15 g	1000 mL
$m \mathrm{~L}$	1 L

Example: Convert $17 \mathrm{~kg} / \mathrm{mL}$ to g / L

17 kg	1000 g	1000 mL
mL	1 Kg	1 L

1.4 Dissecting Terms in Algebraic Expressions

- Order of operations
- P
- E-exponents/powers
- MD - factors (mult./div together)
- AS - terms (Separated by +/-)
- Expression - a set of terms
- Equation - 2 expressions are equal
- Ex: $4 x-7=5$
- Terms: $4 \mathrm{x},-7,5$
- Expressions: 4x-7, 5
- Coefficient - \# multiplied by a variable
- Constant - \# on its own
- Degree (order) - highest sum of exponents in a term (order of expression is the highest order of any term in that expression)
- Polynomials:
- Monomial (1term) $\rightarrow 5 \mathrm{x}$ ($1^{\text {st }}$ degree polynomial)
- Binomial (2 terms) $\rightarrow 3 x+6 y^{4}$ ($4^{\text {th }}$ degree polynomial)
- Trinomial (3 terms) $\rightarrow 2 x+7 x y+8 y$ (2 ${ }^{\text {nd }}$ degree polynomial)
- Lead coefficient - coefficient of highest degree term in expression
- For each of the polynomials above, the lead coefficients are: 5, 6, 7

1.5 Solving Linear Equations

- Combining like terms
- must have same variable and exponent (add/subtract only coefficients)
- ex: $3 n+4 n=7 n$ but $7 n^{2}+8 n \neq 15 n^{2}$ or $15 n^{3}$
- Solving a multi-step problem
- Set up an equation (if none given) based on the info provided
- Use distributive property as needed [ex: $8(n+3)=8 n+24]$
- Combine like terms
- Use the reverse order of operations to isolate the variable
- Fractions and decimals
- If fractions are involved, convert to like fractions. Multiply equation by new denominator.
- If decimals are involved, multiply equation (both sides) by 10^{x} where $\mathrm{x}=$ number of decimal places in longest decimal.
- Some equations have no solution (if x cancels out entirely on both sides and you are left with a false statement such as $-4=5$).
- Some equations have infinite answers (if you are left with the same thing on both sides when you have simplified the equation $\rightarrow 6=6$)

1.6 Literal Equations and Formulas

- Literal equation \rightarrow involved two or more variables
- Just as when solving multi-step equations, you can rearrange a literal equation for just one variable.
- Ex: rearrange $14 \mathrm{x}+7 \mathrm{y}=21$ for y .

$$
\begin{gathered}
7 y=21-14 x \\
y=3-2 x
\end{gathered}
$$

- Ex: rearrange $\mathrm{ax}-\mathrm{bx}=\mathrm{c}$ for x .

$$
\begin{gathered}
x(a-b)=c \\
x=\frac{c}{a-b}
\end{gathered}
$$

- Given a value for one variable, substitute the value in place of the variable and solve.
- Ex. Solve $3 x+7 y=23$ when $x=3$

$$
\begin{gathered}
3(3)+7 y=23 \\
9+7 y=23 \\
7 y=14 \\
y=2
\end{gathered}
$$

- Formula - an equation that states the relationship between two or more quantities. (Ex: $\mathrm{C}=2 \pi \mathrm{r}$)
- Can re-write formulas to solve for another variable
- Ex: $C=2 \pi r$, solve for r

$$
\begin{gathered}
C=2 \pi r \\
\frac{C}{2 \pi}=\frac{2 \pi r}{(2 \pi)} \\
\frac{C}{2 \pi}=r
\end{gathered}
$$

1.7 Linear Inequalities

- Solved in the same way as a multi-step equation
- Major difference in procedure: if you multiply or divide both sides by a negative number, reverse the inequality sign.
- Ex: $9+4 t>21$
$4 t>12$
$t>3$
- Formulas can be adapted for inequalities, as well (ex: p. 61 student book) Geometry In a community garden, you want to fence in a vegetable garden that is adjacent to your friend's garden. You have at most 42 ft of fence. What are the possible lengths of your garden?
$P=2 l+2 w$
$42 \geq 2 l+2(12)$
$42 \geq 2 l+24$
$18 \geq 2 l$
$9 \geq l$
- Additional examples

$$
\begin{aligned}
& 3(\mathrm{t}+1)-4 \mathrm{t} \geq-5 \\
& 3 t+3-4 t \geq-5 \\
& 3-t \geq-5
\end{aligned}
$$

$$
\begin{gathered}
\\
\\
\\
t \leq 8 \\
\circ \\
6 n-1>3 n+8 \\
\\
\\
3 n-1>8 \\
\\
3 n>9 \\
\\
n>3
\end{gathered}
$$

- Just like equations, some inequalities can be never true or always true (identities).
- Ex: $10-8 a \geq 2(5-4 a) \quad 6 m-5>7 m+7-m$
$10-8 a \geq 10-8 a \quad 6 m-5>6 m+7$
$10 \geq 10$ ALWAYS TRUE $-5>7$ NEVER TRUE
- Graphing answers to inequalities on a number line.
- Use open dots if > or <
- Use closed dots if \geq or \leq
- If the variable is $>$ or \geq, shade to the right. If the variable is $<$ or \leq, shade to the left.
- Ex: graph each of the above.

