UNIT 2 – FACTORING

M2 Ch 11 all

- Objective
 - I will be able to put polynomials in standard form and identify their degree and type. I will be able to add and subtract polynomials.
- Vocabulary

Monomial	• GCF	• Polynomial	• Binomial
• Trinomial	Standard Form of a Polynomial		
• Degree of a Polynomial		• Degree of a	a Monomial

- Polynomials
 - A monomial is a real number, a variable, or their product.
 - The degree of a monomial is the sum of its exponents.
 - The addition and/or subtraction of monomials are called polynomials.
 - The degree of a polynomial equals the highest degree of its terms.
 - Standard form of a polynomials: highest degree to lowest degree.

Can be named based on degree or number of terms.

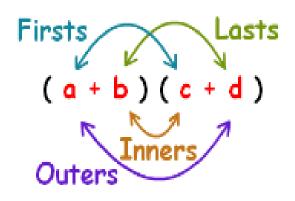
Degree	Name	Degree	Name	# Terms	Name
0	Constant	3	Cubic	1	Monomial
1	Linear	4	Quartic	2	Binomial
2	Quadratic			3	Trinomial

- Adding/Subtracting Polynomials
 - Combine like terms (terms with the same variables and degree)
 - Adding/Subtracting Polynomials
 - Vertical Method line up like terms; then add the coefficients.
 - Horizontal Method group like terms; then add the coefficients.
 - If subtracting polynomials, add the opposite of each term in the polynomial being subtracted. (for either method above)

- Objective
 - I will be able to multiply polynomials using distribution, FOIL, and the vertical method.
- Vocabulary
 - None

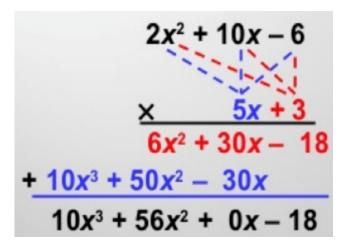
- Multiplying a Polynomial by a Monomial
 - Distribute the monomial into the polynomial by multiplying each term of the polynomial by the monomial.
 - When multiplying two monomials with like bases, add the exponents and multiply the coefficients.

- Multiplying Polynomials
 - Distributive property
 - Distribute one polynomial into the other
 - Then distribute the monomials into the polynomials.
 - - Works only for multiplying two binomials
 - Shortened form of distribution
 - Multiply in the order:
 - <u>First, Outer, Inner, Last</u>



Vertical Method

- Line up the two polynomials
- Multiply the top binomial by one term at a time from the bottom polynomial.
- Add like terms from the products.



2.3 Multiplying Special Cases

- Objective
 - I will be able to square binomials and find the product of the sum and difference of two terms.
- Vocabulary
 - None

2.3 Multiplying Special Cases

- Squaring Binomials
 - Multiplying a binomial by itself results in a special pattern in the trinomial.
 - The pattern slightly changes depending upon whether the two terms are added or subtracted.

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$

2.3 Multiplying Special Cases

- The product of sum and difference
 - Both binomials have the same two terms; one is addition, the other is subtraction.
 - When multiplying in this situation, the middle term cancels out.

$$(a+b)(a-b) = a^2 - b^2$$

- Objective
 - I will be able to factor out the greatest common factor from a polynomial. I will be able to factor quadratic expressions with a lead coefficient of one.
- Vocabulary
 - None

- Factoring Polynomials
 - Find the Greatest Common Factor first, then factor it out of the polynomial.
- □ Put quadratic expression in standard form $(ax^2 + bx + c)$
 - Find factors of c that add up to b. (m * n = c and m + n = b)
 Write the quadratic expression in factored form:

$$(x+m)(x+n)$$

- \Box a = 1, b is positive, c is positive
 - both m and n will be positive
- \Box a = 1, b is negative, c is positive
 - both m and n will be negative
- Where c is negative
 - m will be negative while n is positive.
 - If b is negative, m is the larger number
 - If b is positive, n is the larger number

With Two Variables

D Put expression in standard form $(ax^2 + bxy + cy^2)$

Find factors of c that add up to b.

$$(m * n = c and m + n = b)$$

- Write the quadratic expression in factored form: (x + my)(x + ny)
- Follow the same patterns above for the signs of m and n.

b	C	factors of c, add up to b		
	C	m	n	
+	+	+	+	
_	+		_	
+	_	– (smaller)	+ (larger)	
_		– (larger)	+ (smaller)	

Objective

I will be able to factor quadratic expressions with a lead coefficient other than one. I will be able to factor a cubic expression by grouping.

Vocabulary

Factoring by	Reverse FOIL	Tic-Tac-Toe Method
Grouping		

- \square Quadratic with $a \neq 1$
 - Reverse FOIL
 - Recall that when multiplying two binomials, you get like terms for the Inner and Outer products.
 - If the terms in the quadratic have a GCF, you will need to factor it out first.

- Reverse FOIL uses factors of ac to split the bx term in the quadratic expression.
 - Find ac.
 - Find factors of ac that add up to b (m * n = ac and m + n = b)
 - Replace bx with mx and nx.
 - Pair the first two terms and the last two terms.
 - Factor out the GCF of each side.
 - Use the distributive property to write the factors as the product of two binomials.

Tic-Tac-Toe Method

- Uses a table to organize factoring a quadratic.
- Factor out any GCF of the entire expression first.
- Find ac and its factors that add up to b

$$(m * n = ac and m + n = b)$$

Organize the terms in the table:

- Find the GCF of each column and row.
- The sum of the top row GCFs is one factor, and the sum of the first column GCFs is the other.

- Cubic Expression
 - Some polynomials of a degree greater than 2 can be factored.
 - Factoring by Grouping should be used when there are 4 terms in the polynomial.
 - Always factor out any GCF from the entire expression first.

- This method is similar to Reverse FOIL.
 - Group consecutive pairs of terms when the polynomial is written in standard form.
 - Factor out a GCF from each pair.
 - Use the distributive property.

Objective

I will be able to factor perfect square trinomials and the difference of two squares.

Vocabulary

Perfect-Square	•	Difference of Two Squares
Trinomial		

- Factoring a perfect-square trinomial
 - A perfect-square trinomial is the result of squaring a binomial.
 - For every real number a and b, $a^{2} + 2ab + b^{2} = (a + b)^{2}$ $a^{2} - 2ab + b^{2} = (a - b)^{2}$

How to recognize a perfect-square trinomial:

- First and last terms are perfect squares
- The middle term is twice the product of one factor from the first term and one factor from the second term.

- Factoring the difference of two squares
 - The difference of two squares is the subtraction of one perfect square from another.
 - For every real number a and b, $a^2 - b^2 = (a - b)(a + b)$

Summary of Factoring Polynomials

- Factor out the GCF
- If the polynomial has two terms or three terms, look for a difference of two squares, a perfect-square trinomial, or a pair of binomial factors.
- If the polynomial has four or more terms, group terms and factor to find common binomial factors.
- As a final check, make sure there are no common factors other than 1.