### 5.1 Multiplying Powers with the Same Base (M2 10.1)

- Multiplying Powers
- You can use a property of exponents to multiply powers with the same base.
- A product of powers with the same base can be re-written using one exponent.
- Ex: $3^{4} * 3^{2}=(3 \cdot 3 \cdot 3 \cdot 3) \cdot(3 \cdot 3)=3^{6}$
- In general, an the product of powers with the same base can be written using variables:

$$
\begin{array}{r}
a^{m} * a^{n}=a^{m+n} \leftarrow \text { add exponents } \\
\text { same base }
\end{array}
$$

- Ex: What is each expression written using each base only once?

$$
\begin{aligned}
& 12^{4} * 12^{3}=12^{4+3}=12^{7} \\
& \cdot(-5)^{-2}(-5)^{7}=(-5)^{-2+7}=(-5)^{5}
\end{aligned}
$$

- Multiplying Powers in Algebraic Expressions
- When variable factors have more than one base, be careful to combine only those powers with the same base.
- Expressions should always be given with positive exponents.

$$
x a^{-n}=\frac{x}{a^{n}} \text { switch sign, put }
$$

- Ex: What is the simplified form of each expression?

$$
\begin{aligned}
4 z^{5} * 9 z^{-12} & =(4 \cdot 9)\left(z^{5} \cdot z^{-12}\right) \\
& =36 z^{5+-12}=36 z^{-7}=\frac{36}{z^{7}} \\
& 2 a^{1} * 9 a^{4} * 3 a^{2}
\end{aligned}=(2 \cdot 9 \cdot 3)\left(a \cdot a^{4} \cdot a^{2}\right) ~=54 a^{7}
$$

- Multiplying with Scientific Notation
- You can use the property for multiplying powers with the same base to multiply numbers written in scientific notation
- Scientific notation: $a * 10^{b}$ where $1 \leq|a|<10$
- Ex: At $20^{\circ} \mathrm{C}$, one cubic meter of water has a mass of about $9.98 * 10^{5} \mathrm{~g}$. Each gram of water contains about $3.34 * 10^{22}$ molecules of water. About how many molecules of water does the droplet of water shown below contain?

$$
\left(1.13 \cdot 10^{-7} \mathrm{~m}^{3}\right)\left(9.98 \cdot 10^{5} \mathrm{~g} / \mathrm{m}^{3}\right)\left(3.34 \cdot 10^{22} \text { molec. } 1 \mathrm{~g}\right)
$$

$$
\begin{aligned}
& v=1.13 \times 10^{\prime} \mathrm{m}^{\prime} \\
&=(1.13 \cdot 9.98 \cdot 3.34) \cdot 10^{-7+5+22} \\
&= 37.7 \cdot 10^{20+1}=3.77 \cdot 10^{21} \\
& \text { Scanned by CamScanner }
\end{aligned}
$$

- Simplifying Expressions written with Rational Exponents
- Exponents can also be expressed as fractions. Fractional exponents are called rational exponents.
- Recall that $3^{2}=3 * 3=9$. You can write the same expression using rational exponents: $9^{\frac{1}{2}}=3$
- In general, $a^{\frac{1}{m}}=b$ means that b multiplied as a factor $m$ times equals a .
- Ex: Simplify the expression $\left(2 a^{\frac{2}{3}} * 3 b^{\frac{1}{4}}\right)\left(a^{\frac{1}{3}} * 5 b^{\frac{1}{2}}\right)$

$$
\begin{aligned}
& =(2.35)\left(a^{2 / 3} \cdot a^{1 / 3}\right)\left(b^{1 / 4} \cdot b^{1 / 2}\right) \\
& =30 a^{3 / 3} b^{3 / 4} \\
& =30 a b^{3 / 4}
\end{aligned}
$$

- Ex: Simplify the expression $\left(8 b^{\frac{2}{3}} * 9 t^{\frac{1}{5}}\right)\left(8 b^{\frac{5}{3}} * 9 t^{\frac{3}{5}}\right)$

$$
\begin{gathered}
(8 \cdot 9 \cdot 8 \cdot 9)\left(b^{2 / 3} \cdot b^{5 / 3}\right)\left(t^{1 / 5} \cdot t^{3 / 5}\right) \\
5184 b^{7 / 3} t^{4 / 5}
\end{gathered}
$$

### 5.2 Power Rule (M2 10.2)

- Simplifying a Power Raised to a Power
- You can use properties of exponents to simplify a $\qquad$ raised to a power or a $\qquad$ raised to a power.

$$
\left(x^{5}\right)^{2}=x^{5} * x^{5}=x^{5+5}=x^{5 * 2}=x^{10}
$$

- To raise a power to a power, multiply the exponents.

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

where $\qquad$ $a \neq 0$ and $m$ and $n$ are $\qquad$ numbers

- Ex: Simplify

$$
\begin{aligned}
& \text { Simplify }=5^{4 \cdot 2}=5^{8} \\
& \left(p^{\frac{2}{3}}\right)^{\frac{1}{2}}=p^{\frac{2}{3} \cdot \frac{1}{2}}=p^{1 / 3}
\end{aligned}
$$

- Simplifying an Expression with Powers
- Use the order of operations when you simplify an $\qquad$ exponential expression.
- Ex: What is the simplified form of $y^{3}\left(y^{\frac{5}{2}}\right)^{-2}=y^{3} \cdot y^{\frac{-10}{2}}$

$$
y^{3} \cdot y^{-5}=y^{-2}=\frac{1}{y^{2}}
$$

- Ex: What is the simplified form of $x^{2}\left(x^{6}\right)^{-4}$

$$
x^{2} \cdot x^{6 \cdot-4}=x^{2} \cdot x^{-24}=x^{-22}=\frac{1}{x^{22}}
$$

- Simplifying a Product Raised to a Power
- You can use $\qquad$ multiplication to simplify an expression like $\left(4 m^{\frac{1}{2}}\right)^{3}$.

$$
\begin{array}{rl}
\left(4 m^{\frac{1}{2}}\right)^{3} & =4 m^{\frac{1}{2}} * 4 m^{\frac{1}{2}} * 4 m^{\frac{1}{2}} \\
=4 * 4 * & 4 * m^{\frac{1}{2}} * m^{\frac{1}{2}} * m^{\frac{1}{2}} \\
& =4^{3} m^{\frac{3}{2}} \\
\therefore & =64 m^{\frac{3}{2}}
\end{array}
$$

- To raise a product to a power, raise $\qquad$ each factor to the power and multiply.

$$
\text { where } a \neq 0, \frac{\begin{array}{c}
(a b)^{m}=a^{m} b^{m} \\
b \neq 0
\end{array} \text { and is a rational number }}{}
$$

$$
\text { - Ex: }(3 x)^{4}=3^{4} x^{4}=81 x^{4}
$$

- Ex: What is a simplified expression for the area of the square shown?


$$
\begin{aligned}
A=\left(5 x^{3}\right)^{2} & =5^{2} x^{3 \cdot 2} \\
& =5^{2} x^{6}=25 x^{6}
\end{aligned}
$$

- Simplifying an expression with Products
- What is the simplified form of $\left(n^{\frac{1}{2}}\right)^{10}\left(4 m n^{-\frac{2}{3}}\right)^{3}$ ?

$$
\begin{aligned}
& n^{1 / 2} \cdot 4^{3} m^{3} n^{-2} \\
= & 4^{3} m^{3} n^{5} n^{-2}=64 m^{3} n^{3}
\end{aligned}
$$

- What is the simplified form of $(6 a b)^{3}\left(5 a^{-3}\right)^{2}$.?

$$
\begin{array}{rlrl}
\text { What is the simplified form of }(6 a b)^{2}\left(5 a^{-5}\right) & =25 \cdot 216 \cdot a^{-3} b^{3} \\
6^{3} a^{3} b^{3}: 5^{2} a^{-6} \\
= & =5400 a^{-3} b^{3} \\
& =5^{2} \cdot 6^{3} \cdot a^{3} \cdot a^{-6} \cdot b^{3} & =\frac{5400 b^{3}}{a^{3}}
\end{array}
$$

- You can use the property of raising a product to a power to solve problems involving

$$
\begin{aligned}
& \text { Scientific notation } \\
& \qquad\left(a * 10^{m}\right)^{n}=a^{n} * 10^{m n}
\end{aligned}
$$

- Ex: The expression $\frac{1}{2} m v^{2}$ gives the kinetic energy, in joules, of an object with a mass of mkg traveling at a speed of $v$ meters per second. What is the kinetic energy of an experimental unmanned jet with a mass of $1.3 * 10^{3} \mathrm{~kg}$ traveling at a speed of about $3.1 * 10^{3} \mathrm{~m} / \mathrm{s}$ ?

$$
\begin{aligned}
& m=1.3 \times 10^{3} \mathrm{~kg} \quad E=\frac{1}{2}\left(1.3 \times 10^{3}\right)\left(3.1 \times 10^{3}\right)^{2} \\
& V=3.1 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
& =\frac{1}{2}\left(1.3 \times 10^{3}\right)\left(3.1^{2} \times 10^{3.2}\right) \\
& =\left(\frac{1}{2} \cdot 1.3 \cdot 3.1^{2}\right) \times 10^{3+6} \\
& \begin{array}{l}
=6.2 \times 10^{9} \mathrm{~J} \\
\text { annex by CamScanner }
\end{array}
\end{aligned}
$$

### 5.3 Quotient Rule (M2 10.3)

- Dividing Algebraic Expressions
- You can use properties of exponents to divide powers with the
same base .
- Shown with repeated multiplication:

$$
\frac{4^{5}}{4^{3}}=\frac{4 * 4 * 4 * 4 * 4}{4 * 4 * 4}=4^{2}
$$

- To divide powers with the same base, Subtract sue
exponents.
exp. of numerator

$$
\frac{a^{m}}{a^{n}}=a^{m-n} \text { exp. of denominator }
$$

where $\qquad$ $a \neq 0$ and $m$ and $n$ are $\qquad$ numbers

- Ex: What is the simplified form of each expression?

$$
\begin{aligned}
& \frac{2^{6}}{2^{2}}=2^{6-2}=2^{4} \\
& \frac{y^{\frac{3}{4}}}{y^{\frac{1}{2}}}=y^{\frac{3}{4}-\frac{1}{2}}=y^{\frac{3}{4}-\frac{2}{4}}=y^{1 / 4} \\
& \frac{x^{4} y^{-1} z^{8}}{x^{4} y^{-5} z}=x^{4-4} y^{-1-(-5)} z^{8-1}=x^{0} y^{4} z^{7}=y^{4} z^{7}
\end{aligned}
$$

- Dividing Numbers in Scientific Notation
- The property of dividing powers can be used to divide
- Ex: Population density describes the number of people per unit area. During one year, the population of Angola was $1.21 * 10^{7}$ people. The area of Angola is $4.81 * 10^{5} \mathrm{mi}^{2}$. What was the population density of Angola that year?

$$
\text { pop } \begin{aligned}
D=\frac{1.21 \times 10^{7} \text { people }}{4.81 \times 10^{5} \mathrm{mi}^{2}}=\frac{1.21}{4.81} \times 10^{7-5} & =0.252 \times 10^{2-1} \\
& =2.52 \times 10^{1} \text { people } / \mathrm{mi}^{2} \\
& =25.2 \text { people } / \mathrm{mi}^{2}
\end{aligned}
$$

- Raising a Quotient to a Power
- You can use repeated multiplication to simplify a quotient raised to a power.

$$
\left(\frac{x}{y}\right)^{3}=\frac{x}{y} * \frac{x}{y} * \frac{x}{y}=\frac{x * x * x}{y * y * y}=\frac{x^{3}}{y^{3}}
$$

- To raise a quotient to a power, raise the $\qquad$ numerator and the denominator to the power and $\qquad$ .

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

where $\qquad$ $1 \neq 0$ , $b \neq 0$ and $n$ is a $\qquad$ number

- Ex: What is the simplified form of $\left(\frac{z^{\frac{2}{3}}}{5}\right)^{3}$ ?

$$
=\frac{\left(z^{2 / 3}\right)^{3}}{5^{3}}=\frac{z^{2}}{125}
$$

- Ex: What is the simplified form of $\left(\frac{a^{\frac{3}{4}}}{a^{5}}\right)^{4}$ ?

$$
=\frac{\left(a^{3 / 4}\right)^{4}}{\left(a^{5}\right)^{4}}=\frac{a^{3}}{a^{20}}=a^{3-20}=a^{-17}=\frac{1}{a^{17}}
$$

- Simplifying an Exponential Expression
- Recall that negative exponents $\qquad$ Flip fractions.

$$
\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}
$$

for all rational numbers a and $b$, and positive_ integers $n$.

- Ex: What is the simplified form of $\left(\frac{2 x^{6}}{y^{4}}\right)^{-3}$ ?

$$
=\left(\frac{y^{4}}{2 x^{6}}\right)^{3}=\frac{\left(y^{4}\right)^{3}}{\left(2 x^{6}\right)^{3}}=\frac{y^{12}}{2^{3} x^{18}}=\frac{y^{12}}{8 x^{18}}
$$

### 5.4 Simplifying Radicals (M1 5.8)

- Removing Perfect-Square Factors
- A radical contains a radical.
- The radicand
- The radicand contains no
- No radicals appear in the $\qquad$ has no perfect-square factors other than 1. fraction
- Simplified vs. Not Simplified Radicals
- Simplified:
- Not Simplified: $3 \sqrt{12}$
- Multiplication Property of Square Roots
- For $\qquad$ and $\qquad$ $\sqrt{a b}=\sqrt{a} * \sqrt{b}$
- Can be used to simplify radicals by removing perfect-square factors.
- Ex: What is the simplified form of $\sqrt{160}$ ?

$$
\begin{aligned}
& =\sqrt{16} \cdot \sqrt{10} \\
& =4 \sqrt{10}
\end{aligned}
$$

- Ex: What is the simplified form of $\sqrt{72}$ ?

$$
\begin{aligned}
& =\sqrt{9} \cdot \sqrt{8} \\
& =3 \sqrt{4 \cdot 2}=3 \sqrt{4} \cdot \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

- Removing Variable Factors
- Sometimes, you can simplify radical expressions that contain variables
- A variable with an $\qquad$ exponent is a perfect square. $\sqrt{n^{6}}=n^{3}$
- A variable with an $\qquad$ odd exponent is the product of a perfect square and the variable. (ie. $n^{3}=n^{2} * n$ )
- Ex: What is the simplified form of $\sqrt{54 n^{7}}$ ?

$$
\begin{aligned}
& =\sqrt{9 \cdot 6 \cdot m^{6} \cdot m} \\
& =\sqrt{9 m^{6}} \cdot \sqrt{6 m}=3 m^{3} \sqrt{6 m}
\end{aligned}
$$

- Ex: What is the simplified form of $-m \sqrt{80 m^{9}}$ ?

$$
\begin{aligned}
& =-m \sqrt{4 m^{8}} \sqrt{20 m} \\
& =-m \cdot 2 m^{4} \sqrt{4 \cdot 5 m} \\
& =-2 m^{5} \sqrt{4} \sqrt{5 m} \\
& =-2 m^{5} \cdot 2 \sqrt{5 m} \\
& =-4 m^{5} \sqrt{5 m}
\end{aligned}
$$

- Multiplying Two Radical Expressions

$$
\begin{array}{ll}
=2 \cdot 3 \cdot \sqrt{7 t} \cdot \sqrt{14 t^{2}} & =6 \cdot 7 t \sqrt{2 t} \\
& =6 \sqrt{7 \cdot 7 \cdot 2 \cdot t^{2} \cdot t} \\
& =6 \sqrt{49 t^{2}} \cdot \sqrt{2 t}
\end{array}
$$

- Writing a Radical Expression
- A rectangular door in a museum is three times as tall as it is wide. What is a simplified expression for the maximum length of a painting that fits through the door?


$$
\begin{aligned}
& d^{2}=w^{2}+(3 w)^{2} \\
& d^{2}=w^{2}+9 w^{2} \\
& d^{2}=10 w^{2} \\
& d=\sqrt{10 w^{2}}=\sqrt{w^{2}} \sqrt{10}
\end{aligned}
$$

$$
d=w \sqrt{10}
$$

- Simplifying Fractions within Radicals
- Division Property of Square Roots
- For $a \geq 0$ and $b>0, \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- When a radicand has a denominator that is a $\qquad$ square $\qquad$ it is easier to apply the division property of square roots first, and then $\qquad$ simplify the numerator and denominator of the result.
- Ex: What is the simplified form of $\sqrt{\frac{64}{49}}$ ?

$$
=\frac{\sqrt{64}}{\sqrt{49}}=\frac{8}{7}
$$

- Ex: What is the simplified form of $\sqrt{\frac{8 x^{3}}{50 x}}$ ?

$$
=\sqrt{\frac{4 x^{2}}{25}}=\frac{\sqrt{4 x^{2}}}{\sqrt{25}}=\frac{2 x}{5}
$$

- Rationalizing Denominators
o. When a radicand in the denominator is not a perfect square, you may need to rational re e the denomin alter to remove the radical.
- Multiply both the numerator and the denominator by the same radical expression.
- Ex: What are the simplified forms of $\frac{\sqrt{3}}{\sqrt{7}}$ and $\frac{\sqrt{7}}{\sqrt{8 n}}$ ?

$$
\frac{\sqrt{3}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{21}}{7}
$$

$$
\begin{aligned}
& \therefore \frac{\sqrt{7}}{\sqrt{8 n}} \cdot \frac{\sqrt{8 n}}{\sqrt{8 n}}=\frac{\sqrt{56 n}}{8 n}=\frac{\sqrt{4} \cdot \sqrt{14}}{8 n} \\
& =\frac{2 \sqrt{14 n}}{8 n}=\frac{\sqrt{14 n}}{4 n}
\end{aligned}
$$

5.5 Rational Exponents and Radicals (M2 10.4)

Obj.: I will be able to convert between radical form and exponential form of powers with rational exponents. I will be able to apply radical expressions to real-world situations.

- Finding Roots
- You can use $\qquad$ rational to represent radicals.
- In a radical expression, $\sqrt[n]{a}$,
- " $a$ " is the radicand
- " n " is the $\qquad$
- Gives the $\qquad$ degree of the root.
- If no index is listed, it is assumed to be $\qquad$ meaning square root.
- You can simplify radical expressions by finding $\qquad$ like
$\qquad$ factors
- Ex: What is the simplified form of each expression?

$$
\begin{aligned}
& \sqrt[3]{125}=\sqrt[3]{5 \cdot 5 \cdot 5}=5 \\
& \sqrt[4]{16}=\sqrt[4]{2 \cdot 2 \cdot 2 \cdot 2}=2
\end{aligned}
$$

- Converting to Radical Form
- You can also write $\qquad$ that have rational exponents, like $\frac{2}{3}$, in radical form.
- If the $n^{\text {th }}$ root of $a$ is a real number, and $m$ and $n$ are positive integers, then

$$
a^{\frac{1}{n}}=\sqrt[n]{a} \text { and } a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

- Ex: What is $12 a^{\frac{2}{3}}$ in radical form?

$$
\begin{aligned}
& =12 \cdot \sqrt[3]{a^{2}} \\
& \text { U not part of radicand } b / c \text { not part of base } \\
& =(32 \cdot 2 a)^{4 / 5} \quad \lambda=\left(2^{5}\right)^{4 / 5}(2 a)^{4 / 5} \\
& \begin{array}{ll}
=(32 \cdot 2 a)^{415} \\
=32^{4 / 5}(2 a)^{4 / 5}
\end{array} \quad=\left(2^{5}\right)^{4 / 5}(2 a)^{4 / 5}=16 \sqrt[5]{(2 a)^{4}}
\end{aligned}
$$

- Ex: What is $(64 a)^{\frac{4}{5}}$ in radical form?
- Converting to Exponential Form
- Ex: What is $\sqrt[5]{b^{3}}$ in exponential form?

$$
=b^{3 / 5}
$$

- Ex: What is $\sqrt[3]{27 d^{5}}$ in exponential form?

$$
\begin{aligned}
& =\left(27 d^{5}\right)^{1 / 3} \\
& =27^{1 / 3} d^{5 / 3}=3 d^{5 / 3}
\end{aligned}
$$

$\qquad$

- Using a Radical Expression
- You can estimate the metabolic rate of living organisms based on body mass using Kleiber's law. The formula $R=73.3 \sqrt[4]{M^{3}}$ relates metabolic rate $R$ measured in Calories per day to body mass $M$ measured in kilograms. What is the metabolic rate of a dog with a body mass of 18 kg ?

$$
\begin{aligned}
& R=73.3 \sqrt[4]{M^{3}} \\
& M=18
\end{aligned}
$$

$$
\begin{aligned}
& \text { mass of } 18 \mathrm{~kg} \text { ? } \\
& R=73.3(\mathrm{M})^{3 / 4} \\
&=73.3(18)^{3 / 4} \\
& R=640.6 \text { calories day }
\end{aligned}
$$

- A company that manufactures memory chips for digital cameras uses the formula $c=120 \sqrt[3]{n^{2}}+1300$ to determine the cost, $c$, in dollars, of producing n chips. How much will it cost to produce 250 chips?

$$
\begin{aligned}
& C=120 n^{2 / 3}+1300 \\
& n=250
\end{aligned}
$$

$$
\begin{aligned}
& c=120(250)^{2 / 3}+1300 \\
& c=\$ 6062.20
\end{aligned}
$$

- Carbon-14 is present in all living organisms and decays at a predictable rate. To estimate the age of an organism, archaeologists measure the amount of carbon- 14 remaining after 5000 years can be found using the formula $A=$ $A_{0}(2.7)^{-\frac{3}{5}}$, where $A_{0}$ is the initial amount of carbon- 14 in the sample that is tested. How much carbon-14 is left in a 5000 -year-old sample that originally contained $7.0 * 10^{-12}$ grams of carbon-14?

$$
\begin{array}{ll}
A=A_{0}(2.7)^{-3 / 5} & A=\left(7.0 \times 10^{-12}\right)(2.7)^{-1 / 5} \\
A_{0}=7.0 \times 10^{-12} & A=3.9 \times 10^{-12} \mathrm{~g}
\end{array}
$$

$\qquad$

### 5.6 Pythagorean Theorem, Midpoint \& Distance (M1 7.6)

Obj.: I will be able to find the midpoint, endpoint, or distance of a line segment.

- Finding the Midpoint
- On a number line, the coordinate of the midpoint is the average (or mean) of the $\qquad$ of the endpoints.

$$
\begin{aligned}
& A=a \\
& B=b \\
& M=\frac{a+b}{2}
\end{aligned}
$$



- In the coordinate plane, the coordinates of the midpoint are the average of the $x$-coordinates and the average of the $y$-coordinates of the endpoints.


$$
\begin{aligned}
& A=\left(x_{1}, y_{1}\right) \\
& B=\left(x_{2}, y_{2}\right) \\
& M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
\end{aligned}
$$

- Ex: $\overline{A B}$ has endpoints at -4 and 9. What is the coordinate of its midpoint?

$$
\frac{-4+9}{2}=\frac{5}{2}
$$

- Ex: $\overline{E F}$ has endpoints $E(7,5)$ and $F(2,-4)$. What are the coordinates of its midpoint $M$ ?

- Finding the Endpoint

$$
\begin{aligned}
& \left(\frac{7+2}{2}, \frac{5+(-4)}{2}\right) \\
& =\left(\frac{9}{2}, \frac{1}{2}\right)
\end{aligned}
$$



- When you know the midpoint and the endpoint of a segment, you can use the Midpoint Formula to find the other endpoint.
- Ex: The midpoint of $\overline{C D}$ is $M(-2,1)$. One endpoint is $C(-5,7)$. What are the coordinates of the other endpoint $D$ ?

$$
\begin{aligned}
& -2=\frac{-5+x}{2} \quad 1=\frac{7+y}{2} \\
& -4=-5+x \quad 2=7+y \\
& 1=x \quad-5=y \quad(1,-5) \\
& \text { or } \\
& \begin{array}{r}
(-2,1) \\
02 \cdot 2 \\
\hline(-4,2) \\
-(-5,7)
\end{array}
\end{aligned}
$$

- Ex: The midpoint of $\overline{A B}$ has coordinates $(4,-9)$. Endpoint $A$ has $\left(l_{1}-5\right)$ coordinates $(-3,-5)$. What are the coordinates of $B$ ?

$$
\begin{array}{lll}
4=\frac{-3+x}{2} \quad-9=\frac{-5+y}{2} & (4,-9) \cdot 2 \\
8=-3+x & -18=-5+y \quad \text { or } & (8,-18) \\
11=x \quad-13=y & \frac{+(+3,+5)}{(11,-13)} & \\
& & \text { Scanned by CamScanner }
\end{array}
$$

$\qquad$

- Finding Distance
- Recall that the Pythagorean. Theorem states that for any right triangle with hypotenuse c and legs a and $\mathrm{b}, a^{2}+b^{2}=c^{2}$.
- The $\qquad$ distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$



- Ex: What is the distance between $U(-7,5)$ and $V(4,-3)$ ? Round to the nearest tenth.

$$
\begin{aligned}
d & =\sqrt{(-7-4)^{2}+(5-(-3))^{2}} \\
& =\sqrt{(-11)^{2}+(8)^{2}} \\
& =\sqrt{121+64} \\
& =\sqrt{185}=13.6
\end{aligned}
$$

$$
\begin{aligned}
& (-7,5) \\
& \frac{(4,-3)}{(-11,8)^{2}} \\
& (121+64) \\
& =\sqrt{185}=13.6
\end{aligned}
$$

- Ex: $\overline{S R}$ has endpoints $S(-2,14)$ and $R(3,-1)$. What is $S R$ to the nearest tenth?

$$
d=\sqrt{(-2-3)^{2}+(14-(-1))^{2}}
$$

$$
=\sqrt{(-5)^{2}+(15)^{2}} \quad \text { or }
$$

$$
=\sqrt{25+225}
$$

- Applying Distance

$$
=\sqrt{250}=15.8
$$

$$
\begin{array}{r}
(-2,14) \\
\frac{-(3,-1)}{(-5,15)^{2}} \\
25+225 \\
=\sqrt{250} \\
=15.8
\end{array}
$$

or.

- On a zip-line course, you are harnessed to a cable that travels through the treetops. You start at Platform A and zip to each of the other platforms. How far did you travel from Platform B to Platform C? Each grid unit represents 5 m .


$$
\begin{aligned}
& B(-30,-20) \\
& C(-15,10)
\end{aligned}
$$

$$
\begin{aligned}
d & =\sqrt{(-30-(-15))^{2}+(-20-10)^{2}} \\
& =\sqrt{(-15)^{2}+(-30)^{2}} \\
& =\sqrt{225+900} \\
& =\sqrt{1125} \\
& ={ }^{-25} 225 \\
& =15 \sqrt{5} \\
& =33.5
\end{aligned}
$$

$$
\begin{gathered}
(-30,-20) \\
-(-15,10) \\
\hline(-15,-30)^{2} \\
225+900 \\
=1125 \\
\sqrt{1125} \\
=15 \sqrt{5}
\end{gathered}
$$

Scanned by Camścảñer
5.7 Square Root Equations (M3 6.5)

Obj.: I will be able to use properties of radicals to solve simple radical equations.

- Solving a Square Root Equation
- A radical equation is an equation that has a variable in the radicand or a variable with a rational exponent
- If the radical has index $\qquad$ 2 the equation is a $\qquad$ square root equation.
- To solve a radical equation, $\qquad$ isolate - the radical on one side of the equation. Then $\qquad$ raise each side to the power suggested by the index
- Ex: What is the solution of $3+\sqrt{2 x-3}=8$ ?

$$
\frac{\begin{array}{l}
3+\sqrt{2 x-3} \\
-3 \\
-3
\end{array}}{(\sqrt{2 x-3}=5)^{2}}
$$

$$
\begin{gathered}
\begin{array}{c}
2 x+(-3)=25 \\
+3
\end{array}+3 \\
\hline 2 x=28 \\
x=14
\end{gathered}
$$

- Ex: What is the solution of $3 \sqrt{x}+3=15$ ?

$$
\begin{aligned}
3 \sqrt{x}+3 & =15 \\
-3 & -3 \\
3 \sqrt{x} & =\frac{12}{3} \\
(\sqrt{x} & =4)^{2}
\end{aligned} \quad x=16
$$

- Ex: What is the solution of $(\sqrt{4 x+1}=5)^{2}$

$$
\begin{array}{r}
4 x+1=25 \\
4 x=24 \\
x=6
\end{array}
$$

- Ex: What is the solution of $\sqrt{2 x+3}-7=0$

$$
\begin{gathered}
\frac{+7+7}{(\sqrt{2 x+3}=7)^{2}} \\
2 x+3=49 \\
2 x=46
\end{gathered}
$$

$\qquad$

- Using Radical Equations
- For Meteor Crater in Arizona, the formula $d=2 \sqrt[3]{\frac{V}{0.3}}$ relates the diameter $d$ of the rim (in meters) to the volume $V$ (in cubic meters). What is the volume of Meteor Crater? (All values are approximate).


$$
\begin{aligned}
d & =1.2 \mathrm{~km} \\
& =1200 \mathrm{~m}
\end{aligned}
$$

$$
\frac{1200}{2}=\frac{2 \sqrt[3]{0.3}}{2}
$$

$2.16 * 10^{\wedge} 8=\frac{V}{0.3}$

$$
(600=\sqrt[3]{0.3})^{3}
$$

$6.48 * 10^{\wedge} 7=V$

- The formula $\frac{\pi d^{2} v}{4}=Q$ models the diameter of a pipe where $Q$ is the maximum flow of water in a pipe, and $v$ is the velocity of the water. What is the diameter of a pipe that allows a maximum flow of $30 \mathrm{ft}^{3} / \mathrm{min}$ of water flowing at a velocity of $400 \mathrm{ft} / \mathrm{min}$ ? Round your answers to the nearest inch.

$$
\left.\begin{array}{rl}
Q=30 \frac{\mathrm{ft}^{3}}{\min } & \frac{\pi d^{2}(400)}{4} \\
\begin{array}{rl}
v=400 \mathrm{ft} / \mathrm{min} & \frac{100 \pi d^{2}}{100 \pi}
\end{array}=\frac{30}{100 \pi} \\
d=? & \sqrt{d^{2}}
\end{array}\right)=\sqrt{\frac{30}{100 \pi}} .
$$

